Malaria life cycle intensifies both natural selection and random genetic drift

Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (50), p.20129-20134
Hauptverfasser: Chang, Hsiao-Han, Moss, Eli L., Park, Daniel J., Ndiaye, Daouda, Mboup, Souleymane, Volkman, Sarah K., Sabeti, Pardis C., Wirth, Dyann F., Neafsey, Daniel E., Hartl, Daniel L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20134
container_issue 50
container_start_page 20129
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Chang, Hsiao-Han
Moss, Eli L.
Park, Daniel J.
Ndiaye, Daouda
Mboup, Souleymane
Volkman, Sarah K.
Sabeti, Pardis C.
Wirth, Dyann F.
Neafsey, Daniel E.
Hartl, Daniel L.
description Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and non-synonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.
doi_str_mv 10.1073/pnas.1319857110
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_50_20129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23758122</jstor_id><sourcerecordid>23758122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-2217627d0b762ea8bfd38397fa6d679bd51d7aae92ff0901ebc8349d6b7724cc3</originalsourceid><addsrcrecordid>eNqNkjtvFDEQgC0EIkegpgJZoklzyfixfjRIUUQAKUADteX1ehOf9uzD9iLl3-PVHReggcZT-JvPM-NB6CWBcwKSXeyiLeeEEa06SQg8QisCmqwF1_AYrQCoXCtO-Ql6VsoGAHSn4Ck6oZx2WhK6Qp8_2cnmYPEURo_dvZs8DrH6WMIYfMF9qnc42jpnO-HiJ-9qSBHbOODcjrTFtz76Ghwechjrc_RktFPxLw7xFH27fvf16sP65sv7j1eXN2snAOqaUiIFlQP0LXir-nFgimk5WjEIqfuhI4O01ms6jqCB-N4pxvUgeikpd46dord7727ut35wPtZWoNnlsLX53iQbzJ83MdyZ2_TDMCU4A9IEZwdBTt9nX6rZhuL8NNno01wMUcAI6TRV_0a5poIo_j9WLqRgneh0Q9_8hW7SnGMbWqMkgBKaL29f7CmXUynZj8cWCZhlA8yyAeZhA1rG698nc-R_fXkD8AFYMo-65uvAUCB0qe3VHtmUmvKDgslOEUrZTyuTwBk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470086948</pqid></control><display><type>article</type><title>Malaria life cycle intensifies both natural selection and random genetic drift</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Chang, Hsiao-Han ; Moss, Eli L. ; Park, Daniel J. ; Ndiaye, Daouda ; Mboup, Souleymane ; Volkman, Sarah K. ; Sabeti, Pardis C. ; Wirth, Dyann F. ; Neafsey, Daniel E. ; Hartl, Daniel L.</creator><creatorcontrib>Chang, Hsiao-Han ; Moss, Eli L. ; Park, Daniel J. ; Ndiaye, Daouda ; Mboup, Souleymane ; Volkman, Sarah K. ; Sabeti, Pardis C. ; Wirth, Dyann F. ; Neafsey, Daniel E. ; Hartl, Daniel L.</creatorcontrib><description>Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and non-synonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1319857110</identifier><identifier>PMID: 24259712</identifier><language>eng</language><publisher>United States: NATIONAL ACADEMY OF SCIENCES</publisher><subject>Alleles ; Biological Sciences ; Computer Simulation ; Evolutionary biology ; Founder Effect ; Gene Frequency ; Genetic Drift ; Genetic mutation ; Genetics, Population ; Life cycles ; life history ; Malaria ; Modeling ; Models, Genetic ; Mosquitos ; natural selection ; nucleotide sequences ; Parasite hosts ; Parasites ; Parasitic protozoa ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Plasmodium falciparum - physiology ; Polymorphism ; Polymorphism, Single Nucleotide - genetics ; Population genetics ; Population size ; random mating ; Selection, Genetic ; Senegal ; sequence analysis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (50), p.20129-20134</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 10, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-2217627d0b762ea8bfd38397fa6d679bd51d7aae92ff0901ebc8349d6b7724cc3</citedby><cites>FETCH-LOGICAL-c600t-2217627d0b762ea8bfd38397fa6d679bd51d7aae92ff0901ebc8349d6b7724cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23758122$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23758122$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Hsiao-Han</creatorcontrib><creatorcontrib>Moss, Eli L.</creatorcontrib><creatorcontrib>Park, Daniel J.</creatorcontrib><creatorcontrib>Ndiaye, Daouda</creatorcontrib><creatorcontrib>Mboup, Souleymane</creatorcontrib><creatorcontrib>Volkman, Sarah K.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Wirth, Dyann F.</creatorcontrib><creatorcontrib>Neafsey, Daniel E.</creatorcontrib><creatorcontrib>Hartl, Daniel L.</creatorcontrib><title>Malaria life cycle intensifies both natural selection and random genetic drift</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and non-synonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.</description><subject>Alleles</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Evolutionary biology</subject><subject>Founder Effect</subject><subject>Gene Frequency</subject><subject>Genetic Drift</subject><subject>Genetic mutation</subject><subject>Genetics, Population</subject><subject>Life cycles</subject><subject>life history</subject><subject>Malaria</subject><subject>Modeling</subject><subject>Models, Genetic</subject><subject>Mosquitos</subject><subject>natural selection</subject><subject>nucleotide sequences</subject><subject>Parasite hosts</subject><subject>Parasites</subject><subject>Parasitic protozoa</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Plasmodium falciparum - physiology</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population genetics</subject><subject>Population size</subject><subject>random mating</subject><subject>Selection, Genetic</subject><subject>Senegal</subject><subject>sequence analysis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjtvFDEQgC0EIkegpgJZoklzyfixfjRIUUQAKUADteX1ehOf9uzD9iLl3-PVHReggcZT-JvPM-NB6CWBcwKSXeyiLeeEEa06SQg8QisCmqwF1_AYrQCoXCtO-Ql6VsoGAHSn4Ck6oZx2WhK6Qp8_2cnmYPEURo_dvZs8DrH6WMIYfMF9qnc42jpnO-HiJ-9qSBHbOODcjrTFtz76Ghwechjrc_RktFPxLw7xFH27fvf16sP65sv7j1eXN2snAOqaUiIFlQP0LXir-nFgimk5WjEIqfuhI4O01ms6jqCB-N4pxvUgeikpd46dord7727ut35wPtZWoNnlsLX53iQbzJ83MdyZ2_TDMCU4A9IEZwdBTt9nX6rZhuL8NNno01wMUcAI6TRV_0a5poIo_j9WLqRgneh0Q9_8hW7SnGMbWqMkgBKaL29f7CmXUynZj8cWCZhlA8yyAeZhA1rG698nc-R_fXkD8AFYMo-65uvAUCB0qe3VHtmUmvKDgslOEUrZTyuTwBk</recordid><startdate>20131210</startdate><enddate>20131210</enddate><creator>Chang, Hsiao-Han</creator><creator>Moss, Eli L.</creator><creator>Park, Daniel J.</creator><creator>Ndiaye, Daouda</creator><creator>Mboup, Souleymane</creator><creator>Volkman, Sarah K.</creator><creator>Sabeti, Pardis C.</creator><creator>Wirth, Dyann F.</creator><creator>Neafsey, Daniel E.</creator><creator>Hartl, Daniel L.</creator><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131210</creationdate><title>Malaria life cycle intensifies both natural selection and random genetic drift</title><author>Chang, Hsiao-Han ; Moss, Eli L. ; Park, Daniel J. ; Ndiaye, Daouda ; Mboup, Souleymane ; Volkman, Sarah K. ; Sabeti, Pardis C. ; Wirth, Dyann F. ; Neafsey, Daniel E. ; Hartl, Daniel L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-2217627d0b762ea8bfd38397fa6d679bd51d7aae92ff0901ebc8349d6b7724cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alleles</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Evolutionary biology</topic><topic>Founder Effect</topic><topic>Gene Frequency</topic><topic>Genetic Drift</topic><topic>Genetic mutation</topic><topic>Genetics, Population</topic><topic>Life cycles</topic><topic>life history</topic><topic>Malaria</topic><topic>Modeling</topic><topic>Models, Genetic</topic><topic>Mosquitos</topic><topic>natural selection</topic><topic>nucleotide sequences</topic><topic>Parasite hosts</topic><topic>Parasites</topic><topic>Parasitic protozoa</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Plasmodium falciparum - physiology</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population genetics</topic><topic>Population size</topic><topic>random mating</topic><topic>Selection, Genetic</topic><topic>Senegal</topic><topic>sequence analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Hsiao-Han</creatorcontrib><creatorcontrib>Moss, Eli L.</creatorcontrib><creatorcontrib>Park, Daniel J.</creatorcontrib><creatorcontrib>Ndiaye, Daouda</creatorcontrib><creatorcontrib>Mboup, Souleymane</creatorcontrib><creatorcontrib>Volkman, Sarah K.</creatorcontrib><creatorcontrib>Sabeti, Pardis C.</creatorcontrib><creatorcontrib>Wirth, Dyann F.</creatorcontrib><creatorcontrib>Neafsey, Daniel E.</creatorcontrib><creatorcontrib>Hartl, Daniel L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Hsiao-Han</au><au>Moss, Eli L.</au><au>Park, Daniel J.</au><au>Ndiaye, Daouda</au><au>Mboup, Souleymane</au><au>Volkman, Sarah K.</au><au>Sabeti, Pardis C.</au><au>Wirth, Dyann F.</au><au>Neafsey, Daniel E.</au><au>Hartl, Daniel L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malaria life cycle intensifies both natural selection and random genetic drift</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-12-10</date><risdate>2013</risdate><volume>110</volume><issue>50</issue><spage>20129</spage><epage>20134</epage><pages>20129-20134</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and non-synonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.</abstract><cop>United States</cop><pub>NATIONAL ACADEMY OF SCIENCES</pub><pmid>24259712</pmid><doi>10.1073/pnas.1319857110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (50), p.20129-20134
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_110_50_20129
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Biological Sciences
Computer Simulation
Evolutionary biology
Founder Effect
Gene Frequency
Genetic Drift
Genetic mutation
Genetics, Population
Life cycles
life history
Malaria
Modeling
Models, Genetic
Mosquitos
natural selection
nucleotide sequences
Parasite hosts
Parasites
Parasitic protozoa
Plasmodium falciparum
Plasmodium falciparum - genetics
Plasmodium falciparum - physiology
Polymorphism
Polymorphism, Single Nucleotide - genetics
Population genetics
Population size
random mating
Selection, Genetic
Senegal
sequence analysis
title Malaria life cycle intensifies both natural selection and random genetic drift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malaria%20life%20cycle%20intensifies%20both%20natural%20selection%20and%20random%20genetic%20drift&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Chang,%20Hsiao-Han&rft.date=2013-12-10&rft.volume=110&rft.issue=50&rft.spage=20129&rft.epage=20134&rft.pages=20129-20134&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1319857110&rft_dat=%3Cjstor_pnas_%3E23758122%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1470086948&rft_id=info:pmid/24259712&rft_jstor_id=23758122&rfr_iscdi=true