Repair of UV photolesions in xeroderma pigmentosum group C cells induced by translational readthrough of premature termination codons

About 12% of human genetic disorders involve premature termination codons (PTCs). Aminoglycoside antibiotics have been proposed for restoring full-length proteins by readthrough of PTC. To assess the efficiency of readthrough, we selected homozygous and compound heterozygous skin fibroblasts from xe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-11, Vol.110 (48), p.19483-19488
Hauptverfasser: Kuschal, Christiane, DiGiovanna, John. J., Khan, Sikandar G., Gatti, Richard A., Kraemer, Kenneth H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:About 12% of human genetic disorders involve premature termination codons (PTCs). Aminoglycoside antibiotics have been proposed for restoring full-length proteins by readthrough of PTC. To assess the efficiency of readthrough, we selected homozygous and compound heterozygous skin fibroblasts from xeroderma pigmentosum (XP) patients with different PTCs in the XPC DNA repair gene. XP patients have a nucleotide excision repair defect and a 10,000-fold increased risk of UV-induced skin cancer. In six of eight PTC-containing XP-C cells, treatment with Geneticin and gentamicin resulted in (i) stabilized XPC –mRNA, which would have been degraded by nonsense-mediated decay; (ii) increased expression of XPC protein that localized to UV-damaged sites; (iii) recruitment of XPB and XPD proteins to UV DNA damage sites; and (iv) increased repair of 6–4 photoproducts and cyclobutane pyrimidine dimers. Expression of PTC in a transfected vector revealed that readthrough depends on the PTC sequence and its location within the gene. This sensitive DNA repair assay system demonstrates the complexity of response to PTC readthrough inducers. The efficiency of aminoglycoside-mediated readthrough depends on the type and copy number of PTC, the downstream 4+ nucleotide, and the location within the exon. Treatment with small-molecule nonaminoglycoside compounds (PTC124, BZ16, or RTC14) resulted in similarly increased XPC mRNA expression and photoproduct removal with less toxicity than with the aminoglycosides. Characterizing PTC structure and parameters governing effective PTC readthrough may provide a unique prophylactic therapy for skin cancer prevention in XP-C patients.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1312088110