Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer

Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-repl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (44), p.17732-17737
Hauptverfasser: Zhang, Shenglong, Blain, J. Craig, Zielinska, Daria, Gryaznov, Sergei M., Szostak, Jack W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17737
container_issue 44
container_start_page 17732
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Zhang, Shenglong
Blain, J. Craig
Zielinska, Daria
Gryaznov, Sergei M.
Szostak, Jack W.
description Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N ₃′-P ₅′–linked phosphoramidate DNA (3′-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3′-NP-DNA templates can be copied into complementary 3′-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3′-NP-DNA template into a complementary strand of 3′-NP-DNA. Our results suggest that 3′-NP-DNA has the potential to serve as the genetic material of artificial biological systems.
doi_str_mv 10.1073/pnas.1312329110
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_44_17732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23754381</jstor_id><sourcerecordid>23754381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-7ddf843f3737aaa825139a55d79b73a39ac4fdfc2df7758498732177fd6bade13</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EotvCmRMQqRcuaT22E9sXpKqigFRRCejZ8jr2Nktip3aCFH49DrtsgQunsTTfPM-8h9ALwGeAOT0fvE5nQIFQIgHwI7QCLKGsmcSP0QpjwkvBCDtCxyltMcayEvgpOiIMMDBOV-jmSqex0L4ptDFT1KMtfPDW_5h7PbamMGGYW78pgstQ8fnTRdm132yRZj_e2QXYWP-rDqGbexufoSdOd8k-39cTdHv17uvlh_L65v3Hy4vr0lQSxpI3jROMOsop11oLUgGVuqoaLtec6vw2zDXOkMZxXgkmBacEOHdNvdaNBXqC3u50h2nd28ZYP0bdqSG2vY6zCrpVf3d8e6c24buiAmrGcBZ4sxeI4X6yaVR9m4ztOu1tmJICgbOttZD8_yhjnMmaC5LR03_QbZiiz04slAQpK2CZOt9RJoaUonWHvQGrJVe15Koecs0Tr_4898D_DjIDxR5YJg9yWY8xlY2jy24vd8g2jSE-SFBesexK7r_e9Z0OSm9im9TtF4KhxvkLQvNaPwEG-bt9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449199514</pqid></control><display><type>article</type><title>Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Shenglong ; Blain, J. Craig ; Zielinska, Daria ; Gryaznov, Sergei M. ; Szostak, Jack W.</creator><creatorcontrib>Zhang, Shenglong ; Blain, J. Craig ; Zielinska, Daria ; Gryaznov, Sergei M. ; Szostak, Jack W.</creatorcontrib><description>Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N ₃′-P ₅′–linked phosphoramidate DNA (3′-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3′-NP-DNA templates can be copied into complementary 3′-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3′-NP-DNA template into a complementary strand of 3′-NP-DNA. Our results suggest that 3′-NP-DNA has the potential to serve as the genetic material of artificial biological systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1312329110</identifier><identifier>PMID: 24101473</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amides - chemistry ; Artificial cells ; Artificial Cells - metabolism ; cell membranes ; Cells ; Chromatography, Liquid ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA primers ; Genetic Engineering - methods ; Mass Spectrometry ; Medical genetics ; Membranes ; Monomers ; Nucleic Acid Amplification Techniques - methods ; Nucleic acids ; nucleosides ; Nucleotides ; Oligonucleotides ; Phosphoric Acids - chemistry ; Physical Sciences ; Polymerization ; Polymers ; Polymers - chemical synthesis ; Polymers - chemistry ; Ribonucleic acid ; RNA ; Sequence Analysis, DNA</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17732-17737</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-7ddf843f3737aaa825139a55d79b73a39ac4fdfc2df7758498732177fd6bade13</citedby><cites>FETCH-LOGICAL-c591t-7ddf843f3737aaa825139a55d79b73a39ac4fdfc2df7758498732177fd6bade13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23754381$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23754381$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24101473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Shenglong</creatorcontrib><creatorcontrib>Blain, J. Craig</creatorcontrib><creatorcontrib>Zielinska, Daria</creatorcontrib><creatorcontrib>Gryaznov, Sergei M.</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><title>Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N ₃′-P ₅′–linked phosphoramidate DNA (3′-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3′-NP-DNA templates can be copied into complementary 3′-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3′-NP-DNA template into a complementary strand of 3′-NP-DNA. Our results suggest that 3′-NP-DNA has the potential to serve as the genetic material of artificial biological systems.</description><subject>Amides - chemistry</subject><subject>Artificial cells</subject><subject>Artificial Cells - metabolism</subject><subject>cell membranes</subject><subject>Cells</subject><subject>Chromatography, Liquid</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA primers</subject><subject>Genetic Engineering - methods</subject><subject>Mass Spectrometry</subject><subject>Medical genetics</subject><subject>Membranes</subject><subject>Monomers</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Nucleic acids</subject><subject>nucleosides</subject><subject>Nucleotides</subject><subject>Oligonucleotides</subject><subject>Phosphoric Acids - chemistry</subject><subject>Physical Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemical synthesis</subject><subject>Polymers - chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, DNA</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EotvCmRMQqRcuaT22E9sXpKqigFRRCejZ8jr2Nktip3aCFH49DrtsgQunsTTfPM-8h9ALwGeAOT0fvE5nQIFQIgHwI7QCLKGsmcSP0QpjwkvBCDtCxyltMcayEvgpOiIMMDBOV-jmSqex0L4ptDFT1KMtfPDW_5h7PbamMGGYW78pgstQ8fnTRdm132yRZj_e2QXYWP-rDqGbexufoSdOd8k-39cTdHv17uvlh_L65v3Hy4vr0lQSxpI3jROMOsop11oLUgGVuqoaLtec6vw2zDXOkMZxXgkmBacEOHdNvdaNBXqC3u50h2nd28ZYP0bdqSG2vY6zCrpVf3d8e6c24buiAmrGcBZ4sxeI4X6yaVR9m4ztOu1tmJICgbOttZD8_yhjnMmaC5LR03_QbZiiz04slAQpK2CZOt9RJoaUonWHvQGrJVe15Koecs0Tr_4898D_DjIDxR5YJg9yWY8xlY2jy24vd8g2jSE-SFBesexK7r_e9Z0OSm9im9TtF4KhxvkLQvNaPwEG-bt9</recordid><startdate>20131029</startdate><enddate>20131029</enddate><creator>Zhang, Shenglong</creator><creator>Blain, J. Craig</creator><creator>Zielinska, Daria</creator><creator>Gryaznov, Sergei M.</creator><creator>Szostak, Jack W.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131029</creationdate><title>Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer</title><author>Zhang, Shenglong ; Blain, J. Craig ; Zielinska, Daria ; Gryaznov, Sergei M. ; Szostak, Jack W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-7ddf843f3737aaa825139a55d79b73a39ac4fdfc2df7758498732177fd6bade13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amides - chemistry</topic><topic>Artificial cells</topic><topic>Artificial Cells - metabolism</topic><topic>cell membranes</topic><topic>Cells</topic><topic>Chromatography, Liquid</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA primers</topic><topic>Genetic Engineering - methods</topic><topic>Mass Spectrometry</topic><topic>Medical genetics</topic><topic>Membranes</topic><topic>Monomers</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Nucleic acids</topic><topic>nucleosides</topic><topic>Nucleotides</topic><topic>Oligonucleotides</topic><topic>Phosphoric Acids - chemistry</topic><topic>Physical Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemical synthesis</topic><topic>Polymers - chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shenglong</creatorcontrib><creatorcontrib>Blain, J. Craig</creatorcontrib><creatorcontrib>Zielinska, Daria</creatorcontrib><creatorcontrib>Gryaznov, Sergei M.</creatorcontrib><creatorcontrib>Szostak, Jack W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shenglong</au><au>Blain, J. Craig</au><au>Zielinska, Daria</au><au>Gryaznov, Sergei M.</au><au>Szostak, Jack W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-29</date><risdate>2013</risdate><volume>110</volume><issue>44</issue><spage>17732</spage><epage>17737</epage><pages>17732-17737</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with activated ribonucleotide monomers has led to the copying of short RNA templates; however, these reactions are generally slow (taking days to weeks) and highly error prone. N ₃′-P ₅′–linked phosphoramidate DNA (3′-NP-DNA) is similar to RNA in its overall duplex structure, and is attractive as an alternative to RNA because the high reactivity of its corresponding monomers allows rapid and efficient copying of all four nucleobases on homopolymeric RNA and DNA templates. Here we show that both homopolymeric and mixed-sequence 3′-NP-DNA templates can be copied into complementary 3′-NP-DNA sequences. G:T and A:C wobble pairing leads to a high error rate, but the modified nucleoside 2-thiothymidine suppresses wobble pairing. We show that the 2-thiothymidine modification increases both polymerization rate and fidelity in the copying of a 3′-NP-DNA template into a complementary strand of 3′-NP-DNA. Our results suggest that 3′-NP-DNA has the potential to serve as the genetic material of artificial biological systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24101473</pmid><doi>10.1073/pnas.1312329110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (44), p.17732-17737
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_110_44_17732
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amides - chemistry
Artificial cells
Artificial Cells - metabolism
cell membranes
Cells
Chromatography, Liquid
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA primers
Genetic Engineering - methods
Mass Spectrometry
Medical genetics
Membranes
Monomers
Nucleic Acid Amplification Techniques - methods
Nucleic acids
nucleosides
Nucleotides
Oligonucleotides
Phosphoric Acids - chemistry
Physical Sciences
Polymerization
Polymers
Polymers - chemical synthesis
Polymers - chemistry
Ribonucleic acid
RNA
Sequence Analysis, DNA
title Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20accurate%20nonenzymatic%20copying%20of%20an%20RNA-like%20synthetic%20genetic%20polymer&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Shenglong&rft.date=2013-10-29&rft.volume=110&rft.issue=44&rft.spage=17732&rft.epage=17737&rft.pages=17732-17737&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1312329110&rft_dat=%3Cjstor_pnas_%3E23754381%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449199514&rft_id=info:pmid/24101473&rft_jstor_id=23754381&rfr_iscdi=true