Gene similarity networks provide tools for understanding eukaryote origins and evolution

The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.E1594-E1603
Hauptverfasser: Alvarez-Ponce, David, Lopez, Philippe, Bapteste, Eric, McInerney, James O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1603
container_issue 17
container_start_page E1594
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Alvarez-Ponce, David
Lopez, Philippe
Bapteste, Eric
McInerney, James O.
description The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.
doi_str_mv 10.1073/pnas.1211371110
format Article
fullrecord <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_17_E1594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346118130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</originalsourceid><addsrcrecordid>eNqFkktv1DAUhS0EotOBNTuwxAYWae_1M9lUqqo-kEZiAZXYWZ7EmbrN2IOdDOq_J2GGAbphZcn3O8dXx4eQNwgnCJqfboLNJ8gQuUZEeEZmCBUWSlTwnMwAmC5KwcQROc75HgAqWcJLcsS41EqjmpFv1y44mv3adzb5_pEG1_-I6SHTTYpb3zjax9hl2sZEh9C4lHsbGh9W1A0PNj3G3tGY_MqHTMcBddvYDb2P4RV50douu9f7c05ury6_XtwUi8_Xny7OF0Utue4LtVwq2zCsy0YprlrdouKidiBFAzXjrXauEhwltpI1qKUoJeM1WzoJuuXI5-Rs57sZlmvX1C70yXZmk_x6XM9E682_k-DvzCpuDVdcazkZfNwZ3D2R3ZwvzHQHKIXQVbmd2A_7x1L8Prjcm7XPtes6G1wcssESxpUqwfj_US4UYokcRvT9E_Q-DimMqf2iNEom1Uid7qg6xZyTaw_LIpipDGYqg_lThlHx9u9oDvzv3x8Bugcm5cFu8tPmEuUY_Jy82yGtjcauks_m9gsDVADIVSkU_wkOH8Om</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715256</pqid></control><display><type>article</type><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</creator><creatorcontrib>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</creatorcontrib><description>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211371110</identifier><identifier>PMID: 23576716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ancestry ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Biodiversity ; Biological Evolution ; Biological Sciences ; Computational Biology ; Eubacteria ; Eukaryota - genetics ; Eukaryotes ; eukaryotic cells ; Genes ; Genes - genetics ; Life Sciences ; Phylogenetics ; Phylogeny ; Plasmids ; Plasmids - genetics ; PNAS Plus ; Prokaryotes ; prokaryotic cells ; Proteome - genetics ; Sequence Homology, Nucleic Acid ; Viruses ; Viruses - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.E1594-E1603</ispartof><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</citedby><cites>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</cites><orcidid>0000-0003-3410-9744 ; 0000-0003-1966-1215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637751/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637751/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23576716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01544798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Ponce, David</creatorcontrib><creatorcontrib>Lopez, Philippe</creatorcontrib><creatorcontrib>Bapteste, Eric</creatorcontrib><creatorcontrib>McInerney, James O.</creatorcontrib><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</description><subject>ancestry</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Computational Biology</subject><subject>Eubacteria</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Genes</subject><subject>Genes - genetics</subject><subject>Life Sciences</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>PNAS Plus</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Proteome - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Viruses</subject><subject>Viruses - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhS0EotOBNTuwxAYWae_1M9lUqqo-kEZiAZXYWZ7EmbrN2IOdDOq_J2GGAbphZcn3O8dXx4eQNwgnCJqfboLNJ8gQuUZEeEZmCBUWSlTwnMwAmC5KwcQROc75HgAqWcJLcsS41EqjmpFv1y44mv3adzb5_pEG1_-I6SHTTYpb3zjax9hl2sZEh9C4lHsbGh9W1A0PNj3G3tGY_MqHTMcBddvYDb2P4RV50douu9f7c05ury6_XtwUi8_Xny7OF0Utue4LtVwq2zCsy0YprlrdouKidiBFAzXjrXauEhwltpI1qKUoJeM1WzoJuuXI5-Rs57sZlmvX1C70yXZmk_x6XM9E682_k-DvzCpuDVdcazkZfNwZ3D2R3ZwvzHQHKIXQVbmd2A_7x1L8Prjcm7XPtes6G1wcssESxpUqwfj_US4UYokcRvT9E_Q-DimMqf2iNEom1Uid7qg6xZyTaw_LIpipDGYqg_lThlHx9u9oDvzv3x8Bugcm5cFu8tPmEuUY_Jy82yGtjcauks_m9gsDVADIVSkU_wkOH8Om</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Alvarez-Ponce, David</creator><creator>Lopez, Philippe</creator><creator>Bapteste, Eric</creator><creator>McInerney, James O.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3410-9744</orcidid><orcidid>https://orcid.org/0000-0003-1966-1215</orcidid></search><sort><creationdate>20130423</creationdate><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><author>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ancestry</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Computational Biology</topic><topic>Eubacteria</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Genes</topic><topic>Genes - genetics</topic><topic>Life Sciences</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>PNAS Plus</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Proteome - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Ponce, David</creatorcontrib><creatorcontrib>Lopez, Philippe</creatorcontrib><creatorcontrib>Bapteste, Eric</creatorcontrib><creatorcontrib>McInerney, James O.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Ponce, David</au><au>Lopez, Philippe</au><au>Bapteste, Eric</au><au>McInerney, James O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene similarity networks provide tools for understanding eukaryote origins and evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>E1594</spage><epage>E1603</epage><pages>E1594-E1603</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23576716</pmid><doi>10.1073/pnas.1211371110</doi><orcidid>https://orcid.org/0000-0003-3410-9744</orcidid><orcidid>https://orcid.org/0000-0003-1966-1215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.E1594-E1603
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_110_17_E1594
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects ancestry
Archaea - genetics
Bacteria
Bacteria - genetics
Biodiversity
Biological Evolution
Biological Sciences
Computational Biology
Eubacteria
Eukaryota - genetics
Eukaryotes
eukaryotic cells
Genes
Genes - genetics
Life Sciences
Phylogenetics
Phylogeny
Plasmids
Plasmids - genetics
PNAS Plus
Prokaryotes
prokaryotic cells
Proteome - genetics
Sequence Homology, Nucleic Acid
Viruses
Viruses - genetics
title Gene similarity networks provide tools for understanding eukaryote origins and evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20similarity%20networks%20provide%20tools%20for%20understanding%20eukaryote%20origins%20and%20evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Alvarez-Ponce,%20David&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=E1594&rft.epage=E1603&rft.pages=E1594-E1603&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211371110&rft_dat=%3Cproquest_pnas_%3E1346118130%3C/proquest_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715256&rft_id=info:pmid/23576716&rfr_iscdi=true