Gene similarity networks provide tools for understanding eukaryote origins and evolution
The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (17), p.E1594-E1603 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1603 |
---|---|
container_issue | 17 |
container_start_page | E1594 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Alvarez-Ponce, David Lopez, Philippe Bapteste, Eric McInerney, James O. |
description | The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events. |
doi_str_mv | 10.1073/pnas.1211371110 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_17_E1594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1346118130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</originalsourceid><addsrcrecordid>eNqFkktv1DAUhS0EotOBNTuwxAYWae_1M9lUqqo-kEZiAZXYWZ7EmbrN2IOdDOq_J2GGAbphZcn3O8dXx4eQNwgnCJqfboLNJ8gQuUZEeEZmCBUWSlTwnMwAmC5KwcQROc75HgAqWcJLcsS41EqjmpFv1y44mv3adzb5_pEG1_-I6SHTTYpb3zjax9hl2sZEh9C4lHsbGh9W1A0PNj3G3tGY_MqHTMcBddvYDb2P4RV50douu9f7c05ury6_XtwUi8_Xny7OF0Utue4LtVwq2zCsy0YprlrdouKidiBFAzXjrXauEhwltpI1qKUoJeM1WzoJuuXI5-Rs57sZlmvX1C70yXZmk_x6XM9E682_k-DvzCpuDVdcazkZfNwZ3D2R3ZwvzHQHKIXQVbmd2A_7x1L8Prjcm7XPtes6G1wcssESxpUqwfj_US4UYokcRvT9E_Q-DimMqf2iNEom1Uid7qg6xZyTaw_LIpipDGYqg_lThlHx9u9oDvzv3x8Bugcm5cFu8tPmEuUY_Jy82yGtjcauks_m9gsDVADIVSkU_wkOH8Om</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346715256</pqid></control><display><type>article</type><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</creator><creatorcontrib>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</creatorcontrib><description>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211371110</identifier><identifier>PMID: 23576716</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>ancestry ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Biodiversity ; Biological Evolution ; Biological Sciences ; Computational Biology ; Eubacteria ; Eukaryota - genetics ; Eukaryotes ; eukaryotic cells ; Genes ; Genes - genetics ; Life Sciences ; Phylogenetics ; Phylogeny ; Plasmids ; Plasmids - genetics ; PNAS Plus ; Prokaryotes ; prokaryotic cells ; Proteome - genetics ; Sequence Homology, Nucleic Acid ; Viruses ; Viruses - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.E1594-E1603</ispartof><rights>Copyright National Academy of Sciences Apr 23, 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</citedby><cites>FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</cites><orcidid>0000-0003-3410-9744 ; 0000-0003-1966-1215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637751/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637751/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23576716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01544798$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Ponce, David</creatorcontrib><creatorcontrib>Lopez, Philippe</creatorcontrib><creatorcontrib>Bapteste, Eric</creatorcontrib><creatorcontrib>McInerney, James O.</creatorcontrib><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</description><subject>ancestry</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Computational Biology</subject><subject>Eubacteria</subject><subject>Eukaryota - genetics</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Genes</subject><subject>Genes - genetics</subject><subject>Life Sciences</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>PNAS Plus</subject><subject>Prokaryotes</subject><subject>prokaryotic cells</subject><subject>Proteome - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Viruses</subject><subject>Viruses - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhS0EotOBNTuwxAYWae_1M9lUqqo-kEZiAZXYWZ7EmbrN2IOdDOq_J2GGAbphZcn3O8dXx4eQNwgnCJqfboLNJ8gQuUZEeEZmCBUWSlTwnMwAmC5KwcQROc75HgAqWcJLcsS41EqjmpFv1y44mv3adzb5_pEG1_-I6SHTTYpb3zjax9hl2sZEh9C4lHsbGh9W1A0PNj3G3tGY_MqHTMcBddvYDb2P4RV50douu9f7c05ury6_XtwUi8_Xny7OF0Utue4LtVwq2zCsy0YprlrdouKidiBFAzXjrXauEhwltpI1qKUoJeM1WzoJuuXI5-Rs57sZlmvX1C70yXZmk_x6XM9E682_k-DvzCpuDVdcazkZfNwZ3D2R3ZwvzHQHKIXQVbmd2A_7x1L8Prjcm7XPtes6G1wcssESxpUqwfj_US4UYokcRvT9E_Q-DimMqf2iNEom1Uid7qg6xZyTaw_LIpipDGYqg_lThlHx9u9oDvzv3x8Bugcm5cFu8tPmEuUY_Jy82yGtjcauks_m9gsDVADIVSkU_wkOH8Om</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Alvarez-Ponce, David</creator><creator>Lopez, Philippe</creator><creator>Bapteste, Eric</creator><creator>McInerney, James O.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3410-9744</orcidid><orcidid>https://orcid.org/0000-0003-1966-1215</orcidid></search><sort><creationdate>20130423</creationdate><title>Gene similarity networks provide tools for understanding eukaryote origins and evolution</title><author>Alvarez-Ponce, David ; Lopez, Philippe ; Bapteste, Eric ; McInerney, James O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-6bb6ad21c8d6636f7f1634ce054d0c23f7ee943151f52d17548523c2be507f313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ancestry</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Computational Biology</topic><topic>Eubacteria</topic><topic>Eukaryota - genetics</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Genes</topic><topic>Genes - genetics</topic><topic>Life Sciences</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>PNAS Plus</topic><topic>Prokaryotes</topic><topic>prokaryotic cells</topic><topic>Proteome - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Viruses</topic><topic>Viruses - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Ponce, David</creatorcontrib><creatorcontrib>Lopez, Philippe</creatorcontrib><creatorcontrib>Bapteste, Eric</creatorcontrib><creatorcontrib>McInerney, James O.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Ponce, David</au><au>Lopez, Philippe</au><au>Bapteste, Eric</au><au>McInerney, James O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene similarity networks provide tools for understanding eukaryote origins and evolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>110</volume><issue>17</issue><spage>E1594</spage><epage>E1603</epage><pages>E1594-E1603</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The complexity and depth of the relationships between the three domains of life challenge the reliability of phylogenetic methods, encouraging the use of alternative analytical tools. We reconstructed a gene similarity network comprising the proteomes of 14 eukaryotes, 104 prokaryotes, 2,389 viruses and 1,044 plasmids. This network contains multiple signatures of the chimerical origin of Eukaryotes as a fusion of an archaebacterium and a eubacterium that could not have been observed using phylogenetic trees. A number of connected components (gene sets with stronger similarities than expected by chance) contain pairs of eukaryotic sequences exhibiting no direct detectable similarity. Instead, many eukaryotic sequences were indirectly connected through a “eukaryote–archaebacterium–eubacterium–eukaryote” similarity path. Furthermore, eukaryotic genes highly connected to prokaryotic genes from one domain tend not to be connected to genes from the other prokaryotic domain. Genes of archaebacterial and eubacterial ancestry tend to perform different functions and to act at different subcellular compartments, but in such an intertwined way that suggests an early rather than late integration of both gene repertoires. The archaebacterial repertoire has a similar size in all eukaryotic genomes whereas the number of eubacterium-derived genes is much more variable, suggesting a higher plasticity of this gene repertoire. Consequently, highly reduced eukaryotic genomes contain more genes of archaebacterial than eubacterial affinity. Connected components with prokaryotic and eukaryotic genes tend to include viral and plasmid genes, compatible with a role of gene mobility in the origin of Eukaryotes. Our analyses highlight the power of network approaches to study deep evolutionary events.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23576716</pmid><doi>10.1073/pnas.1211371110</doi><orcidid>https://orcid.org/0000-0003-3410-9744</orcidid><orcidid>https://orcid.org/0000-0003-1966-1215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (17), p.E1594-E1603 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_110_17_E1594 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ancestry Archaea - genetics Bacteria Bacteria - genetics Biodiversity Biological Evolution Biological Sciences Computational Biology Eubacteria Eukaryota - genetics Eukaryotes eukaryotic cells Genes Genes - genetics Life Sciences Phylogenetics Phylogeny Plasmids Plasmids - genetics PNAS Plus Prokaryotes prokaryotic cells Proteome - genetics Sequence Homology, Nucleic Acid Viruses Viruses - genetics |
title | Gene similarity networks provide tools for understanding eukaryote origins and evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A15%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20similarity%20networks%20provide%20tools%20for%20understanding%20eukaryote%20origins%20and%20evolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Alvarez-Ponce,%20David&rft.date=2013-04-23&rft.volume=110&rft.issue=17&rft.spage=E1594&rft.epage=E1603&rft.pages=E1594-E1603&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211371110&rft_dat=%3Cproquest_pnas_%3E1346118130%3C/proquest_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346715256&rft_id=info:pmid/23576716&rfr_iscdi=true |