RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release

The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (51), p.21128-21133
Hauptverfasser: Stacey, David, Bilbao, Ainhoa, Maroteaux, Matthieu, Jia, Tianye, Easton, Alanna C., Longueville, Sophie, Nymberg, Charlotte, Banaschewski, Tobias, Barker, Gareth J., Büchel, Christian, Carvalho, Fabiana, Conrod, Patricia J., Desrivières, Sylvane, Fauth-Bühler, Mira, Fernandez-Medarde, Alberto, Flor, Herta, Gallinat, Jürgen, Garavan, Hugh, Bokde, Arun L. W., Heinz, Andreas, Ittermann, Bernd, Lathrop, Mark, Lawrence, Claire, Loth, Eva, Lourdusamy, Anbarasu, Mann, Karl F., Martinot, Jean-Luc, Nees, Frauke, Palkovits, Miklós, Paus, Tomas, Pausova, Zdenka, Rietschel, Marcella, Ruggeri, Barbara, Santos, Eugenio, Smolka, Michael N., Staehlin, Oliver, Jarvelin, Marjo-Riitta, Elliott, Paul, Sommer, Wolfgang H., Mameli, Manuel, Müller, Christian P., Spanagel, Rainer, Girault, Jean-Antoine, Schumann, Gunter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21133
container_issue 51
container_start_page 21128
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Stacey, David
Bilbao, Ainhoa
Maroteaux, Matthieu
Jia, Tianye
Easton, Alanna C.
Longueville, Sophie
Nymberg, Charlotte
Banaschewski, Tobias
Barker, Gareth J.
Büchel, Christian
Carvalho, Fabiana
Conrod, Patricia J.
Desrivières, Sylvane
Fauth-Bühler, Mira
Fernandez-Medarde, Alberto
Flor, Herta
Gallinat, Jürgen
Garavan, Hugh
Bokde, Arun L. W.
Heinz, Andreas
Ittermann, Bernd
Lathrop, Mark
Lawrence, Claire
Loth, Eva
Lourdusamy, Anbarasu
Mann, Karl F.
Martinot, Jean-Luc
Nees, Frauke
Palkovits, Miklós
Paus, Tomas
Pausova, Zdenka
Rietschel, Marcella
Ruggeri, Barbara
Santos, Eugenio
Smolka, Michael N.
Staehlin, Oliver
Jarvelin, Marjo-Riitta
Elliott, Paul
Sommer, Wolfgang H.
Mameli, Manuel
Müller, Christian P.
Spanagel, Rainer
Girault, Jean-Antoine
Schumann, Gunter
description The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.
doi_str_mv 10.1073/pnas.1211844110
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_51_21128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830676</jstor_id><sourcerecordid>41830676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</originalsourceid><addsrcrecordid>eNqNkcFv0zAYxSMEYmVw5gRE4sIlmz_bSezLpGliA2kS0jbOlu186VwldrGTof73uGppgRMn23q_79nPryjeAjkD0rLztdfpDCiA4ByAPCsWQCRUDZfkebEghLaV4JSfFK9SWhFCZC3Iy-KEMkpZzeii-Hl3eX9zd03LiMt50BOmUg82PIahcr6bLXZZcb4P0eKIfirNpszHYUZvnV-WI6YwuNE4W3ZhrUfnsfQ4x-BLbSf35KZNqX13FCMOqBO-Ll70ekj4Zr-eFg_Xnx-uvlS3326-Xl3eVram9VSJhjMrGHSmMUJYRCqJ1UaTLm-ZYNgYoNb2LddgmZTa9D0Y0UvDetkZdlpc7GzXsxmxszlB1INaRzfquFFBO_W34t2jWoYnxep8U9Nkg097gxh-zJgmNbpkcRi0xzAnBYIwAF7X_4HSXIXgsiUZ_fgPugpz9PkjMsVpAzKnz9T5jrIxpBSxP7wbiNrWr7b1q2P9eeL9n3EP_O--M1Duge3k0U6qGlT2oSIj73bIKk0hHhgOgpGm3cb8sNN7HZReRpfU93tKoCEEWEulZL8A5SHL0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242619525</pqid></control><display><type>article</type><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter</creator><creatorcontrib>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter ; IMAGEN Consortium ; the IMAGEN Consortium</creatorcontrib><description>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211844110</identifier><identifier>PMID: 23223532</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adolescent ; Adolescents ; Alcohol drinking ; Alcohol use ; Alcohols ; Animals ; Behavioral neuroscience ; Biological Sciences ; boys ; Brain ; Brain - metabolism ; calcium ; Calcium - metabolism ; Child ; Dopamine ; Dopamine - metabolism ; Dopaminergic Neurons - metabolism ; drug abuse ; Electrophysiology - methods ; Ethanol ; Ethanol - pharmacology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; genes ; Genotype ; Genotypes ; Haplotypes ; Humans ; Male ; Medical imaging ; Meta-analysis ; Mice ; Mice, Transgenic ; mitogen-activated protein kinase ; Neurons ; Neurons - metabolism ; phenotype ; potassium ; ras Guanine Nucleotide Exchange Factors - genetics ; ras Guanine Nucleotide Exchange Factors - physiology ; Reinforcement, Psychology ; risk factors ; RNA, Messenger - metabolism ; single nucleotide polymorphism ; strength (mechanics) ; Time Factors ; Ventral tegmental area ; Ventral Tegmental Area - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.21128-21133</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</citedby><cites>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stacey, David</creatorcontrib><creatorcontrib>Bilbao, Ainhoa</creatorcontrib><creatorcontrib>Maroteaux, Matthieu</creatorcontrib><creatorcontrib>Jia, Tianye</creatorcontrib><creatorcontrib>Easton, Alanna C.</creatorcontrib><creatorcontrib>Longueville, Sophie</creatorcontrib><creatorcontrib>Nymberg, Charlotte</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Carvalho, Fabiana</creatorcontrib><creatorcontrib>Conrod, Patricia J.</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Fauth-Bühler, Mira</creatorcontrib><creatorcontrib>Fernandez-Medarde, Alberto</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Gallinat, Jürgen</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Bokde, Arun L. W.</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Lathrop, Mark</creatorcontrib><creatorcontrib>Lawrence, Claire</creatorcontrib><creatorcontrib>Loth, Eva</creatorcontrib><creatorcontrib>Lourdusamy, Anbarasu</creatorcontrib><creatorcontrib>Mann, Karl F.</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Palkovits, Miklós</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Pausova, Zdenka</creatorcontrib><creatorcontrib>Rietschel, Marcella</creatorcontrib><creatorcontrib>Ruggeri, Barbara</creatorcontrib><creatorcontrib>Santos, Eugenio</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Staehlin, Oliver</creatorcontrib><creatorcontrib>Jarvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Sommer, Wolfgang H.</creatorcontrib><creatorcontrib>Mameli, Manuel</creatorcontrib><creatorcontrib>Müller, Christian P.</creatorcontrib><creatorcontrib>Spanagel, Rainer</creatorcontrib><creatorcontrib>Girault, Jean-Antoine</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>IMAGEN Consortium</creatorcontrib><creatorcontrib>the IMAGEN Consortium</creatorcontrib><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</description><subject>Adolescent</subject><subject>Adolescents</subject><subject>Alcohol drinking</subject><subject>Alcohol use</subject><subject>Alcohols</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>boys</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Child</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>drug abuse</subject><subject>Electrophysiology - methods</subject><subject>Ethanol</subject><subject>Ethanol - pharmacology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>genes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Meta-analysis</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mitogen-activated protein kinase</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>phenotype</subject><subject>potassium</subject><subject>ras Guanine Nucleotide Exchange Factors - genetics</subject><subject>ras Guanine Nucleotide Exchange Factors - physiology</subject><subject>Reinforcement, Psychology</subject><subject>risk factors</subject><subject>RNA, Messenger - metabolism</subject><subject>single nucleotide polymorphism</subject><subject>strength (mechanics)</subject><subject>Time Factors</subject><subject>Ventral tegmental area</subject><subject>Ventral Tegmental Area - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv0zAYxSMEYmVw5gRE4sIlmz_bSezLpGliA2kS0jbOlu186VwldrGTof73uGppgRMn23q_79nPryjeAjkD0rLztdfpDCiA4ByAPCsWQCRUDZfkebEghLaV4JSfFK9SWhFCZC3Iy-KEMkpZzeii-Hl3eX9zd03LiMt50BOmUg82PIahcr6bLXZZcb4P0eKIfirNpszHYUZvnV-WI6YwuNE4W3ZhrUfnsfQ4x-BLbSf35KZNqX13FCMOqBO-Ll70ekj4Zr-eFg_Xnx-uvlS3326-Xl3eVram9VSJhjMrGHSmMUJYRCqJ1UaTLm-ZYNgYoNb2LddgmZTa9D0Y0UvDetkZdlpc7GzXsxmxszlB1INaRzfquFFBO_W34t2jWoYnxep8U9Nkg097gxh-zJgmNbpkcRi0xzAnBYIwAF7X_4HSXIXgsiUZ_fgPugpz9PkjMsVpAzKnz9T5jrIxpBSxP7wbiNrWr7b1q2P9eeL9n3EP_O--M1Duge3k0U6qGlT2oSIj73bIKk0hHhgOgpGm3cb8sNN7HZReRpfU93tKoCEEWEulZL8A5SHL0Q</recordid><startdate>20121218</startdate><enddate>20121218</enddate><creator>Stacey, David</creator><creator>Bilbao, Ainhoa</creator><creator>Maroteaux, Matthieu</creator><creator>Jia, Tianye</creator><creator>Easton, Alanna C.</creator><creator>Longueville, Sophie</creator><creator>Nymberg, Charlotte</creator><creator>Banaschewski, Tobias</creator><creator>Barker, Gareth J.</creator><creator>Büchel, Christian</creator><creator>Carvalho, Fabiana</creator><creator>Conrod, Patricia J.</creator><creator>Desrivières, Sylvane</creator><creator>Fauth-Bühler, Mira</creator><creator>Fernandez-Medarde, Alberto</creator><creator>Flor, Herta</creator><creator>Gallinat, Jürgen</creator><creator>Garavan, Hugh</creator><creator>Bokde, Arun L. W.</creator><creator>Heinz, Andreas</creator><creator>Ittermann, Bernd</creator><creator>Lathrop, Mark</creator><creator>Lawrence, Claire</creator><creator>Loth, Eva</creator><creator>Lourdusamy, Anbarasu</creator><creator>Mann, Karl F.</creator><creator>Martinot, Jean-Luc</creator><creator>Nees, Frauke</creator><creator>Palkovits, Miklós</creator><creator>Paus, Tomas</creator><creator>Pausova, Zdenka</creator><creator>Rietschel, Marcella</creator><creator>Ruggeri, Barbara</creator><creator>Santos, Eugenio</creator><creator>Smolka, Michael N.</creator><creator>Staehlin, Oliver</creator><creator>Jarvelin, Marjo-Riitta</creator><creator>Elliott, Paul</creator><creator>Sommer, Wolfgang H.</creator><creator>Mameli, Manuel</creator><creator>Müller, Christian P.</creator><creator>Spanagel, Rainer</creator><creator>Girault, Jean-Antoine</creator><creator>Schumann, Gunter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121218</creationdate><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><author>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adolescents</topic><topic>Alcohol drinking</topic><topic>Alcohol use</topic><topic>Alcohols</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>boys</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Child</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>drug abuse</topic><topic>Electrophysiology - methods</topic><topic>Ethanol</topic><topic>Ethanol - pharmacology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>genes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Meta-analysis</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mitogen-activated protein kinase</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>phenotype</topic><topic>potassium</topic><topic>ras Guanine Nucleotide Exchange Factors - genetics</topic><topic>ras Guanine Nucleotide Exchange Factors - physiology</topic><topic>Reinforcement, Psychology</topic><topic>risk factors</topic><topic>RNA, Messenger - metabolism</topic><topic>single nucleotide polymorphism</topic><topic>strength (mechanics)</topic><topic>Time Factors</topic><topic>Ventral tegmental area</topic><topic>Ventral Tegmental Area - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacey, David</creatorcontrib><creatorcontrib>Bilbao, Ainhoa</creatorcontrib><creatorcontrib>Maroteaux, Matthieu</creatorcontrib><creatorcontrib>Jia, Tianye</creatorcontrib><creatorcontrib>Easton, Alanna C.</creatorcontrib><creatorcontrib>Longueville, Sophie</creatorcontrib><creatorcontrib>Nymberg, Charlotte</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Carvalho, Fabiana</creatorcontrib><creatorcontrib>Conrod, Patricia J.</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Fauth-Bühler, Mira</creatorcontrib><creatorcontrib>Fernandez-Medarde, Alberto</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Gallinat, Jürgen</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Bokde, Arun L. W.</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Lathrop, Mark</creatorcontrib><creatorcontrib>Lawrence, Claire</creatorcontrib><creatorcontrib>Loth, Eva</creatorcontrib><creatorcontrib>Lourdusamy, Anbarasu</creatorcontrib><creatorcontrib>Mann, Karl F.</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Palkovits, Miklós</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Pausova, Zdenka</creatorcontrib><creatorcontrib>Rietschel, Marcella</creatorcontrib><creatorcontrib>Ruggeri, Barbara</creatorcontrib><creatorcontrib>Santos, Eugenio</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Staehlin, Oliver</creatorcontrib><creatorcontrib>Jarvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Sommer, Wolfgang H.</creatorcontrib><creatorcontrib>Mameli, Manuel</creatorcontrib><creatorcontrib>Müller, Christian P.</creatorcontrib><creatorcontrib>Spanagel, Rainer</creatorcontrib><creatorcontrib>Girault, Jean-Antoine</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>IMAGEN Consortium</creatorcontrib><creatorcontrib>the IMAGEN Consortium</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacey, David</au><au>Bilbao, Ainhoa</au><au>Maroteaux, Matthieu</au><au>Jia, Tianye</au><au>Easton, Alanna C.</au><au>Longueville, Sophie</au><au>Nymberg, Charlotte</au><au>Banaschewski, Tobias</au><au>Barker, Gareth J.</au><au>Büchel, Christian</au><au>Carvalho, Fabiana</au><au>Conrod, Patricia J.</au><au>Desrivières, Sylvane</au><au>Fauth-Bühler, Mira</au><au>Fernandez-Medarde, Alberto</au><au>Flor, Herta</au><au>Gallinat, Jürgen</au><au>Garavan, Hugh</au><au>Bokde, Arun L. W.</au><au>Heinz, Andreas</au><au>Ittermann, Bernd</au><au>Lathrop, Mark</au><au>Lawrence, Claire</au><au>Loth, Eva</au><au>Lourdusamy, Anbarasu</au><au>Mann, Karl F.</au><au>Martinot, Jean-Luc</au><au>Nees, Frauke</au><au>Palkovits, Miklós</au><au>Paus, Tomas</au><au>Pausova, Zdenka</au><au>Rietschel, Marcella</au><au>Ruggeri, Barbara</au><au>Santos, Eugenio</au><au>Smolka, Michael N.</au><au>Staehlin, Oliver</au><au>Jarvelin, Marjo-Riitta</au><au>Elliott, Paul</au><au>Sommer, Wolfgang H.</au><au>Mameli, Manuel</au><au>Müller, Christian P.</au><au>Spanagel, Rainer</au><au>Girault, Jean-Antoine</au><au>Schumann, Gunter</au><aucorp>IMAGEN Consortium</aucorp><aucorp>the IMAGEN Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-18</date><risdate>2012</risdate><volume>109</volume><issue>51</issue><spage>21128</spage><epage>21133</epage><pages>21128-21133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23223532</pmid><doi>10.1073/pnas.1211844110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.21128-21133
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_51_21128
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Adolescent
Adolescents
Alcohol drinking
Alcohol use
Alcohols
Animals
Behavioral neuroscience
Biological Sciences
boys
Brain
Brain - metabolism
calcium
Calcium - metabolism
Child
Dopamine
Dopamine - metabolism
Dopaminergic Neurons - metabolism
drug abuse
Electrophysiology - methods
Ethanol
Ethanol - pharmacology
Extracellular Signal-Regulated MAP Kinases - metabolism
genes
Genotype
Genotypes
Haplotypes
Humans
Male
Medical imaging
Meta-analysis
Mice
Mice, Transgenic
mitogen-activated protein kinase
Neurons
Neurons - metabolism
phenotype
potassium
ras Guanine Nucleotide Exchange Factors - genetics
ras Guanine Nucleotide Exchange Factors - physiology
Reinforcement, Psychology
risk factors
RNA, Messenger - metabolism
single nucleotide polymorphism
strength (mechanics)
Time Factors
Ventral tegmental area
Ventral Tegmental Area - metabolism
title RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RASGRF2%20regulates%20alcohol-induced%20reinforcement%20by%20influencing%20mesolimbic%20dopamine%20neuron%20activity%20and%20dopamine%20release&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stacey,%20David&rft.aucorp=IMAGEN%20Consortium&rft.date=2012-12-18&rft.volume=109&rft.issue=51&rft.spage=21128&rft.epage=21133&rft.pages=21128-21133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211844110&rft_dat=%3Cjstor_pnas_%3E41830676%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1242619525&rft_id=info:pmid/23223532&rft_jstor_id=41830676&rfr_iscdi=true