RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release
The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-n...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (51), p.21128-21133 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21133 |
---|---|
container_issue | 51 |
container_start_page | 21128 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Stacey, David Bilbao, Ainhoa Maroteaux, Matthieu Jia, Tianye Easton, Alanna C. Longueville, Sophie Nymberg, Charlotte Banaschewski, Tobias Barker, Gareth J. Büchel, Christian Carvalho, Fabiana Conrod, Patricia J. Desrivières, Sylvane Fauth-Bühler, Mira Fernandez-Medarde, Alberto Flor, Herta Gallinat, Jürgen Garavan, Hugh Bokde, Arun L. W. Heinz, Andreas Ittermann, Bernd Lathrop, Mark Lawrence, Claire Loth, Eva Lourdusamy, Anbarasu Mann, Karl F. Martinot, Jean-Luc Nees, Frauke Palkovits, Miklós Paus, Tomas Pausova, Zdenka Rietschel, Marcella Ruggeri, Barbara Santos, Eugenio Smolka, Michael N. Staehlin, Oliver Jarvelin, Marjo-Riitta Elliott, Paul Sommer, Wolfgang H. Mameli, Manuel Müller, Christian P. Spanagel, Rainer Girault, Jean-Antoine Schumann, Gunter |
description | The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse. |
doi_str_mv | 10.1073/pnas.1211844110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_51_21128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830676</jstor_id><sourcerecordid>41830676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</originalsourceid><addsrcrecordid>eNqNkcFv0zAYxSMEYmVw5gRE4sIlmz_bSezLpGliA2kS0jbOlu186VwldrGTof73uGppgRMn23q_79nPryjeAjkD0rLztdfpDCiA4ByAPCsWQCRUDZfkebEghLaV4JSfFK9SWhFCZC3Iy-KEMkpZzeii-Hl3eX9zd03LiMt50BOmUg82PIahcr6bLXZZcb4P0eKIfirNpszHYUZvnV-WI6YwuNE4W3ZhrUfnsfQ4x-BLbSf35KZNqX13FCMOqBO-Ll70ekj4Zr-eFg_Xnx-uvlS3326-Xl3eVram9VSJhjMrGHSmMUJYRCqJ1UaTLm-ZYNgYoNb2LddgmZTa9D0Y0UvDetkZdlpc7GzXsxmxszlB1INaRzfquFFBO_W34t2jWoYnxep8U9Nkg097gxh-zJgmNbpkcRi0xzAnBYIwAF7X_4HSXIXgsiUZ_fgPugpz9PkjMsVpAzKnz9T5jrIxpBSxP7wbiNrWr7b1q2P9eeL9n3EP_O--M1Duge3k0U6qGlT2oSIj73bIKk0hHhgOgpGm3cb8sNN7HZReRpfU93tKoCEEWEulZL8A5SHL0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242619525</pqid></control><display><type>article</type><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter</creator><creatorcontrib>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter ; IMAGEN Consortium ; the IMAGEN Consortium</creatorcontrib><description>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211844110</identifier><identifier>PMID: 23223532</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adolescent ; Adolescents ; Alcohol drinking ; Alcohol use ; Alcohols ; Animals ; Behavioral neuroscience ; Biological Sciences ; boys ; Brain ; Brain - metabolism ; calcium ; Calcium - metabolism ; Child ; Dopamine ; Dopamine - metabolism ; Dopaminergic Neurons - metabolism ; drug abuse ; Electrophysiology - methods ; Ethanol ; Ethanol - pharmacology ; Extracellular Signal-Regulated MAP Kinases - metabolism ; genes ; Genotype ; Genotypes ; Haplotypes ; Humans ; Male ; Medical imaging ; Meta-analysis ; Mice ; Mice, Transgenic ; mitogen-activated protein kinase ; Neurons ; Neurons - metabolism ; phenotype ; potassium ; ras Guanine Nucleotide Exchange Factors - genetics ; ras Guanine Nucleotide Exchange Factors - physiology ; Reinforcement, Psychology ; risk factors ; RNA, Messenger - metabolism ; single nucleotide polymorphism ; strength (mechanics) ; Time Factors ; Ventral tegmental area ; Ventral Tegmental Area - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.21128-21133</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 18, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</citedby><cites>FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stacey, David</creatorcontrib><creatorcontrib>Bilbao, Ainhoa</creatorcontrib><creatorcontrib>Maroteaux, Matthieu</creatorcontrib><creatorcontrib>Jia, Tianye</creatorcontrib><creatorcontrib>Easton, Alanna C.</creatorcontrib><creatorcontrib>Longueville, Sophie</creatorcontrib><creatorcontrib>Nymberg, Charlotte</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Carvalho, Fabiana</creatorcontrib><creatorcontrib>Conrod, Patricia J.</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Fauth-Bühler, Mira</creatorcontrib><creatorcontrib>Fernandez-Medarde, Alberto</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Gallinat, Jürgen</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Bokde, Arun L. W.</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Lathrop, Mark</creatorcontrib><creatorcontrib>Lawrence, Claire</creatorcontrib><creatorcontrib>Loth, Eva</creatorcontrib><creatorcontrib>Lourdusamy, Anbarasu</creatorcontrib><creatorcontrib>Mann, Karl F.</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Palkovits, Miklós</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Pausova, Zdenka</creatorcontrib><creatorcontrib>Rietschel, Marcella</creatorcontrib><creatorcontrib>Ruggeri, Barbara</creatorcontrib><creatorcontrib>Santos, Eugenio</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Staehlin, Oliver</creatorcontrib><creatorcontrib>Jarvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Sommer, Wolfgang H.</creatorcontrib><creatorcontrib>Mameli, Manuel</creatorcontrib><creatorcontrib>Müller, Christian P.</creatorcontrib><creatorcontrib>Spanagel, Rainer</creatorcontrib><creatorcontrib>Girault, Jean-Antoine</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>IMAGEN Consortium</creatorcontrib><creatorcontrib>the IMAGEN Consortium</creatorcontrib><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</description><subject>Adolescent</subject><subject>Adolescents</subject><subject>Alcohol drinking</subject><subject>Alcohol use</subject><subject>Alcohols</subject><subject>Animals</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>boys</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Child</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopaminergic Neurons - metabolism</subject><subject>drug abuse</subject><subject>Electrophysiology - methods</subject><subject>Ethanol</subject><subject>Ethanol - pharmacology</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>genes</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Meta-analysis</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>mitogen-activated protein kinase</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>phenotype</subject><subject>potassium</subject><subject>ras Guanine Nucleotide Exchange Factors - genetics</subject><subject>ras Guanine Nucleotide Exchange Factors - physiology</subject><subject>Reinforcement, Psychology</subject><subject>risk factors</subject><subject>RNA, Messenger - metabolism</subject><subject>single nucleotide polymorphism</subject><subject>strength (mechanics)</subject><subject>Time Factors</subject><subject>Ventral tegmental area</subject><subject>Ventral Tegmental Area - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFv0zAYxSMEYmVw5gRE4sIlmz_bSezLpGliA2kS0jbOlu186VwldrGTof73uGppgRMn23q_79nPryjeAjkD0rLztdfpDCiA4ByAPCsWQCRUDZfkebEghLaV4JSfFK9SWhFCZC3Iy-KEMkpZzeii-Hl3eX9zd03LiMt50BOmUg82PIahcr6bLXZZcb4P0eKIfirNpszHYUZvnV-WI6YwuNE4W3ZhrUfnsfQ4x-BLbSf35KZNqX13FCMOqBO-Ll70ekj4Zr-eFg_Xnx-uvlS3326-Xl3eVram9VSJhjMrGHSmMUJYRCqJ1UaTLm-ZYNgYoNb2LddgmZTa9D0Y0UvDetkZdlpc7GzXsxmxszlB1INaRzfquFFBO_W34t2jWoYnxep8U9Nkg097gxh-zJgmNbpkcRi0xzAnBYIwAF7X_4HSXIXgsiUZ_fgPugpz9PkjMsVpAzKnz9T5jrIxpBSxP7wbiNrWr7b1q2P9eeL9n3EP_O--M1Duge3k0U6qGlT2oSIj73bIKk0hHhgOgpGm3cb8sNN7HZReRpfU93tKoCEEWEulZL8A5SHL0Q</recordid><startdate>20121218</startdate><enddate>20121218</enddate><creator>Stacey, David</creator><creator>Bilbao, Ainhoa</creator><creator>Maroteaux, Matthieu</creator><creator>Jia, Tianye</creator><creator>Easton, Alanna C.</creator><creator>Longueville, Sophie</creator><creator>Nymberg, Charlotte</creator><creator>Banaschewski, Tobias</creator><creator>Barker, Gareth J.</creator><creator>Büchel, Christian</creator><creator>Carvalho, Fabiana</creator><creator>Conrod, Patricia J.</creator><creator>Desrivières, Sylvane</creator><creator>Fauth-Bühler, Mira</creator><creator>Fernandez-Medarde, Alberto</creator><creator>Flor, Herta</creator><creator>Gallinat, Jürgen</creator><creator>Garavan, Hugh</creator><creator>Bokde, Arun L. W.</creator><creator>Heinz, Andreas</creator><creator>Ittermann, Bernd</creator><creator>Lathrop, Mark</creator><creator>Lawrence, Claire</creator><creator>Loth, Eva</creator><creator>Lourdusamy, Anbarasu</creator><creator>Mann, Karl F.</creator><creator>Martinot, Jean-Luc</creator><creator>Nees, Frauke</creator><creator>Palkovits, Miklós</creator><creator>Paus, Tomas</creator><creator>Pausova, Zdenka</creator><creator>Rietschel, Marcella</creator><creator>Ruggeri, Barbara</creator><creator>Santos, Eugenio</creator><creator>Smolka, Michael N.</creator><creator>Staehlin, Oliver</creator><creator>Jarvelin, Marjo-Riitta</creator><creator>Elliott, Paul</creator><creator>Sommer, Wolfgang H.</creator><creator>Mameli, Manuel</creator><creator>Müller, Christian P.</creator><creator>Spanagel, Rainer</creator><creator>Girault, Jean-Antoine</creator><creator>Schumann, Gunter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20121218</creationdate><title>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</title><author>Stacey, David ; Bilbao, Ainhoa ; Maroteaux, Matthieu ; Jia, Tianye ; Easton, Alanna C. ; Longueville, Sophie ; Nymberg, Charlotte ; Banaschewski, Tobias ; Barker, Gareth J. ; Büchel, Christian ; Carvalho, Fabiana ; Conrod, Patricia J. ; Desrivières, Sylvane ; Fauth-Bühler, Mira ; Fernandez-Medarde, Alberto ; Flor, Herta ; Gallinat, Jürgen ; Garavan, Hugh ; Bokde, Arun L. W. ; Heinz, Andreas ; Ittermann, Bernd ; Lathrop, Mark ; Lawrence, Claire ; Loth, Eva ; Lourdusamy, Anbarasu ; Mann, Karl F. ; Martinot, Jean-Luc ; Nees, Frauke ; Palkovits, Miklós ; Paus, Tomas ; Pausova, Zdenka ; Rietschel, Marcella ; Ruggeri, Barbara ; Santos, Eugenio ; Smolka, Michael N. ; Staehlin, Oliver ; Jarvelin, Marjo-Riitta ; Elliott, Paul ; Sommer, Wolfgang H. ; Mameli, Manuel ; Müller, Christian P. ; Spanagel, Rainer ; Girault, Jean-Antoine ; Schumann, Gunter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-8643c831db6b88cee290caba0dee2383e6b12ccf74a1c399abff1b8f9b3f9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adolescent</topic><topic>Adolescents</topic><topic>Alcohol drinking</topic><topic>Alcohol use</topic><topic>Alcohols</topic><topic>Animals</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>boys</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Child</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopaminergic Neurons - metabolism</topic><topic>drug abuse</topic><topic>Electrophysiology - methods</topic><topic>Ethanol</topic><topic>Ethanol - pharmacology</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>genes</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Meta-analysis</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>mitogen-activated protein kinase</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>phenotype</topic><topic>potassium</topic><topic>ras Guanine Nucleotide Exchange Factors - genetics</topic><topic>ras Guanine Nucleotide Exchange Factors - physiology</topic><topic>Reinforcement, Psychology</topic><topic>risk factors</topic><topic>RNA, Messenger - metabolism</topic><topic>single nucleotide polymorphism</topic><topic>strength (mechanics)</topic><topic>Time Factors</topic><topic>Ventral tegmental area</topic><topic>Ventral Tegmental Area - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stacey, David</creatorcontrib><creatorcontrib>Bilbao, Ainhoa</creatorcontrib><creatorcontrib>Maroteaux, Matthieu</creatorcontrib><creatorcontrib>Jia, Tianye</creatorcontrib><creatorcontrib>Easton, Alanna C.</creatorcontrib><creatorcontrib>Longueville, Sophie</creatorcontrib><creatorcontrib>Nymberg, Charlotte</creatorcontrib><creatorcontrib>Banaschewski, Tobias</creatorcontrib><creatorcontrib>Barker, Gareth J.</creatorcontrib><creatorcontrib>Büchel, Christian</creatorcontrib><creatorcontrib>Carvalho, Fabiana</creatorcontrib><creatorcontrib>Conrod, Patricia J.</creatorcontrib><creatorcontrib>Desrivières, Sylvane</creatorcontrib><creatorcontrib>Fauth-Bühler, Mira</creatorcontrib><creatorcontrib>Fernandez-Medarde, Alberto</creatorcontrib><creatorcontrib>Flor, Herta</creatorcontrib><creatorcontrib>Gallinat, Jürgen</creatorcontrib><creatorcontrib>Garavan, Hugh</creatorcontrib><creatorcontrib>Bokde, Arun L. W.</creatorcontrib><creatorcontrib>Heinz, Andreas</creatorcontrib><creatorcontrib>Ittermann, Bernd</creatorcontrib><creatorcontrib>Lathrop, Mark</creatorcontrib><creatorcontrib>Lawrence, Claire</creatorcontrib><creatorcontrib>Loth, Eva</creatorcontrib><creatorcontrib>Lourdusamy, Anbarasu</creatorcontrib><creatorcontrib>Mann, Karl F.</creatorcontrib><creatorcontrib>Martinot, Jean-Luc</creatorcontrib><creatorcontrib>Nees, Frauke</creatorcontrib><creatorcontrib>Palkovits, Miklós</creatorcontrib><creatorcontrib>Paus, Tomas</creatorcontrib><creatorcontrib>Pausova, Zdenka</creatorcontrib><creatorcontrib>Rietschel, Marcella</creatorcontrib><creatorcontrib>Ruggeri, Barbara</creatorcontrib><creatorcontrib>Santos, Eugenio</creatorcontrib><creatorcontrib>Smolka, Michael N.</creatorcontrib><creatorcontrib>Staehlin, Oliver</creatorcontrib><creatorcontrib>Jarvelin, Marjo-Riitta</creatorcontrib><creatorcontrib>Elliott, Paul</creatorcontrib><creatorcontrib>Sommer, Wolfgang H.</creatorcontrib><creatorcontrib>Mameli, Manuel</creatorcontrib><creatorcontrib>Müller, Christian P.</creatorcontrib><creatorcontrib>Spanagel, Rainer</creatorcontrib><creatorcontrib>Girault, Jean-Antoine</creatorcontrib><creatorcontrib>Schumann, Gunter</creatorcontrib><creatorcontrib>IMAGEN Consortium</creatorcontrib><creatorcontrib>the IMAGEN Consortium</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stacey, David</au><au>Bilbao, Ainhoa</au><au>Maroteaux, Matthieu</au><au>Jia, Tianye</au><au>Easton, Alanna C.</au><au>Longueville, Sophie</au><au>Nymberg, Charlotte</au><au>Banaschewski, Tobias</au><au>Barker, Gareth J.</au><au>Büchel, Christian</au><au>Carvalho, Fabiana</au><au>Conrod, Patricia J.</au><au>Desrivières, Sylvane</au><au>Fauth-Bühler, Mira</au><au>Fernandez-Medarde, Alberto</au><au>Flor, Herta</au><au>Gallinat, Jürgen</au><au>Garavan, Hugh</au><au>Bokde, Arun L. W.</au><au>Heinz, Andreas</au><au>Ittermann, Bernd</au><au>Lathrop, Mark</au><au>Lawrence, Claire</au><au>Loth, Eva</au><au>Lourdusamy, Anbarasu</au><au>Mann, Karl F.</au><au>Martinot, Jean-Luc</au><au>Nees, Frauke</au><au>Palkovits, Miklós</au><au>Paus, Tomas</au><au>Pausova, Zdenka</au><au>Rietschel, Marcella</au><au>Ruggeri, Barbara</au><au>Santos, Eugenio</au><au>Smolka, Michael N.</au><au>Staehlin, Oliver</au><au>Jarvelin, Marjo-Riitta</au><au>Elliott, Paul</au><au>Sommer, Wolfgang H.</au><au>Mameli, Manuel</au><au>Müller, Christian P.</au><au>Spanagel, Rainer</au><au>Girault, Jean-Antoine</au><au>Schumann, Gunter</au><aucorp>IMAGEN Consortium</aucorp><aucorp>the IMAGEN Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-18</date><risdate>2012</risdate><volume>109</volume><issue>51</issue><spage>21128</spage><epage>21133</epage><pages>21128-21133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The firing of mesolimbic dopamine neurons is important for drug-induced reinforcement, although underlying genetic factors remain poorly understood. In a recent genome-wide association metaanalysis of alcohol intake, we identified a suggestive association of SNP rs26907 in the ras-specific guanine-nucleotide releasing factor 2 (RASGRF2) gene, encoding a protein that mediates Ca ²⁺-dependent activation of the ERK pathway. We performed functional characterization of this gene in relation to alcohol-related phenotypes and mesolimbic dopamine function in both mice and adolescent humans. Ethanol intake and preference were decreased in Rasgrf2 ⁻/⁻ mice relative to WT controls. Accordingly, ethanol-induced dopamine release in the ventral striatum was blunted in Rasgrf2 ⁻/⁻ mice. Recording of dopamine neurons in the ventral tegmental area revealed reduced excitability in the absence of Ras-GRF2, likely because of lack of inhibition of the I A potassium current by ERK. This deficit provided an explanation for the altered dopamine release, presumably linked to impaired activation of dopamine neurons firing. Functional neuroimaging analysis of a monetary incentive–delay task in 663 adolescent boys revealed significant association of ventral striatal activity during reward anticipation with a RASGRF2 haplotype containing rs26907, the SNP associated with alcohol intake in our previous metaanalysis. This finding suggests a link between the RASGRF2 haplotype and reward sensitivity, a known risk factor for alcohol and drug addiction. Indeed, follow-up of these same boys at age 16 y revealed an association between this haplotype and number of drinking episodes. Together, these combined animal and human data indicate a role for RASGRF2 in the regulation of mesolimbic dopamine neuron activity, reward response, and alcohol use and abuse.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23223532</pmid><doi>10.1073/pnas.1211844110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.21128-21133 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_109_51_21128 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Adolescent Adolescents Alcohol drinking Alcohol use Alcohols Animals Behavioral neuroscience Biological Sciences boys Brain Brain - metabolism calcium Calcium - metabolism Child Dopamine Dopamine - metabolism Dopaminergic Neurons - metabolism drug abuse Electrophysiology - methods Ethanol Ethanol - pharmacology Extracellular Signal-Regulated MAP Kinases - metabolism genes Genotype Genotypes Haplotypes Humans Male Medical imaging Meta-analysis Mice Mice, Transgenic mitogen-activated protein kinase Neurons Neurons - metabolism phenotype potassium ras Guanine Nucleotide Exchange Factors - genetics ras Guanine Nucleotide Exchange Factors - physiology Reinforcement, Psychology risk factors RNA, Messenger - metabolism single nucleotide polymorphism strength (mechanics) Time Factors Ventral tegmental area Ventral Tegmental Area - metabolism |
title | RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A46%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RASGRF2%20regulates%20alcohol-induced%20reinforcement%20by%20influencing%20mesolimbic%20dopamine%20neuron%20activity%20and%20dopamine%20release&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stacey,%20David&rft.aucorp=IMAGEN%20Consortium&rft.date=2012-12-18&rft.volume=109&rft.issue=51&rft.spage=21128&rft.epage=21133&rft.pages=21128-21133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211844110&rft_dat=%3Cjstor_pnas_%3E41830676%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1242619525&rft_id=info:pmid/23223532&rft_jstor_id=41830676&rfr_iscdi=true |