Ramification of stream networks

The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characterist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-12, Vol.109 (51), p.20832-20836
Hauptverfasser: Devauchelle, Olivier, Petroff, Alexander P., Seybold, Hansjörg F., Rothman, Daniel H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20836
container_issue 51
container_start_page 20832
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Devauchelle, Olivier
Petroff, Alexander P.
Seybold, Hansjörg F.
Rothman, Daniel H.
description The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2 π /5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km ² groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.
doi_str_mv 10.1073/pnas.1215218109
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_51_20832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41830625</jstor_id><sourcerecordid>41830625</sourcerecordid><originalsourceid>FETCH-LOGICAL-a648t-378a92004be1bdc7d1733130679677bbc9a829af8db3fdefe85b853dc887047d3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS0Egi1w7qmwUi9wCMz4I7YvlRAqH9JKlQqcLSdxINtNvLWzIP77OsqyFC625PebN555hHxFOEOQ7HzZ2XiGFAVFhaC3yCSdmOVcwzaZAFCZKU75HvkS4xwAtFCwS_Yoo5SJnE7I8W_bNnVT2r7x3dTX09gHZ9tp5_oXH_7EA7JT20V0h-t7nzxc_by_vMlmv65vLy9mmc256jMmldUUgBcOi6qUFUrGkEEudS5lUZTaKqptraqC1ZWrnRKFEqwqlZLAZcX2yY_Rd7kqWleVruuDXZhlaFobXo23jfmodM2TefTPhgmqgbNkcDoaPH0qu7mYmeENUAAwJZ8xsSfrZsH_XbnYm7aJpVssbOf8KhpUwBA4aEjo90_o3K9Cl1ZhkHKaY5pPJep8pMrgYwyu3vwAwQxBmSEo8x5Uqjj6f94N_5ZMAqZrYKh8t9NGoKGg2IB8G5F57H3YMBxVWjwVST8e9dp6Yx9DE83DHQXMATAFJpH9A449qYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1242619678</pqid></control><display><type>article</type><title>Ramification of stream networks</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Devauchelle, Olivier ; Petroff, Alexander P. ; Seybold, Hansjörg F. ; Rothman, Daniel H.</creator><creatorcontrib>Devauchelle, Olivier ; Petroff, Alexander P. ; Seybold, Hansjörg F. ; Rothman, Daniel H.</creatorcontrib><description>The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2 π /5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km ² groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1215218109</identifier><identifier>PMID: 23223562</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Conservation of Natural Resources - methods ; Creeks &amp; streams ; Environmental Monitoring - methods ; Environmental Restoration and Remediation - methods ; Florida ; Geography ; Geometric planes ; Geometric shapes ; Geometry ; Groundwater ; Groundwater flow ; Mechanical springs ; Models, Statistical ; Models, Theoretical ; Natural springs ; Physical Sciences ; Physics ; Rivers ; seepage ; Streams ; Valleys ; Water Movements ; Water tables</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.20832-20836</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 18, 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a648t-378a92004be1bdc7d1733130679677bbc9a829af8db3fdefe85b853dc887047d3</citedby><cites>FETCH-LOGICAL-a648t-378a92004be1bdc7d1733130679677bbc9a829af8db3fdefe85b853dc887047d3</cites><orcidid>0000-0002-7295-4896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41830625$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41830625$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23223562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01500387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Devauchelle, Olivier</creatorcontrib><creatorcontrib>Petroff, Alexander P.</creatorcontrib><creatorcontrib>Seybold, Hansjörg F.</creatorcontrib><creatorcontrib>Rothman, Daniel H.</creatorcontrib><title>Ramification of stream networks</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2 π /5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km ² groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.</description><subject>Conservation of Natural Resources - methods</subject><subject>Creeks &amp; streams</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Restoration and Remediation - methods</subject><subject>Florida</subject><subject>Geography</subject><subject>Geometric planes</subject><subject>Geometric shapes</subject><subject>Geometry</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Mechanical springs</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Natural springs</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Rivers</subject><subject>seepage</subject><subject>Streams</subject><subject>Valleys</subject><subject>Water Movements</subject><subject>Water tables</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS0Egi1w7qmwUi9wCMz4I7YvlRAqH9JKlQqcLSdxINtNvLWzIP77OsqyFC625PebN555hHxFOEOQ7HzZ2XiGFAVFhaC3yCSdmOVcwzaZAFCZKU75HvkS4xwAtFCwS_Yoo5SJnE7I8W_bNnVT2r7x3dTX09gHZ9tp5_oXH_7EA7JT20V0h-t7nzxc_by_vMlmv65vLy9mmc256jMmldUUgBcOi6qUFUrGkEEudS5lUZTaKqptraqC1ZWrnRKFEqwqlZLAZcX2yY_Rd7kqWleVruuDXZhlaFobXo23jfmodM2TefTPhgmqgbNkcDoaPH0qu7mYmeENUAAwJZ8xsSfrZsH_XbnYm7aJpVssbOf8KhpUwBA4aEjo90_o3K9Cl1ZhkHKaY5pPJep8pMrgYwyu3vwAwQxBmSEo8x5Uqjj6f94N_5ZMAqZrYKh8t9NGoKGg2IB8G5F57H3YMBxVWjwVST8e9dp6Yx9DE83DHQXMATAFJpH9A449qYU</recordid><startdate>20121218</startdate><enddate>20121218</enddate><creator>Devauchelle, Olivier</creator><creator>Petroff, Alexander P.</creator><creator>Seybold, Hansjörg F.</creator><creator>Rothman, Daniel H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7295-4896</orcidid></search><sort><creationdate>20121218</creationdate><title>Ramification of stream networks</title><author>Devauchelle, Olivier ; Petroff, Alexander P. ; Seybold, Hansjörg F. ; Rothman, Daniel H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a648t-378a92004be1bdc7d1733130679677bbc9a829af8db3fdefe85b853dc887047d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Conservation of Natural Resources - methods</topic><topic>Creeks &amp; streams</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Restoration and Remediation - methods</topic><topic>Florida</topic><topic>Geography</topic><topic>Geometric planes</topic><topic>Geometric shapes</topic><topic>Geometry</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Mechanical springs</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Natural springs</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Rivers</topic><topic>seepage</topic><topic>Streams</topic><topic>Valleys</topic><topic>Water Movements</topic><topic>Water tables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devauchelle, Olivier</creatorcontrib><creatorcontrib>Petroff, Alexander P.</creatorcontrib><creatorcontrib>Seybold, Hansjörg F.</creatorcontrib><creatorcontrib>Rothman, Daniel H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devauchelle, Olivier</au><au>Petroff, Alexander P.</au><au>Seybold, Hansjörg F.</au><au>Rothman, Daniel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ramification of stream networks</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-12-18</date><risdate>2012</risdate><volume>109</volume><issue>51</issue><spage>20832</spage><epage>20836</epage><pages>20832-20836</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The geometric complexity of stream networks has been a source of fascination for centuries. However, a comprehensive understanding of ramification—the mechanism of branching by which such networks grow—remains elusive. Here we show that streams incised by groundwater seepage branch at a characteristic angle of 2 π /5 = 72°. Our theory represents streams as a collection of paths growing and bifurcating in a diffusing field. Our observations of nearly 5,000 bifurcated streams growing in a 100 km ² groundwater field on the Florida Panhandle yield a mean bifurcation angle of 71.9° ± 0.8°. This good accord between theory and observation suggests that the network geometry is determined by the external flow field but not, as classical theories imply, by the flow within the streams themselves.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23223562</pmid><doi>10.1073/pnas.1215218109</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7295-4896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-12, Vol.109 (51), p.20832-20836
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_51_20832
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Conservation of Natural Resources - methods
Creeks & streams
Environmental Monitoring - methods
Environmental Restoration and Remediation - methods
Florida
Geography
Geometric planes
Geometric shapes
Geometry
Groundwater
Groundwater flow
Mechanical springs
Models, Statistical
Models, Theoretical
Natural springs
Physical Sciences
Physics
Rivers
seepage
Streams
Valleys
Water Movements
Water tables
title Ramification of stream networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ramification%20of%20stream%20networks&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Devauchelle,%20Olivier&rft.date=2012-12-18&rft.volume=109&rft.issue=51&rft.spage=20832&rft.epage=20836&rft.pages=20832-20836&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1215218109&rft_dat=%3Cjstor_pnas_%3E41830625%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1242619678&rft_id=info:pmid/23223562&rft_jstor_id=41830625&rfr_iscdi=true