Fiber orientation-dependent white matter contrast in gradient echo MRI

Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-11, Vol.109 (45), p.18559-18564
Hauptverfasser: Wharton, Samuel, Bowtell, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18564
container_issue 45
container_start_page 18559
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Wharton, Samuel
Bowtell, Richard
description Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to a new diagnostic tool for investigating tissue microstructure. Since it has been suggested that myelin is the dominant source of this contrast, creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the NMR signal is an essential step toward fully understanding WM contrast. In this study, we show by comparison of the results of simulations and experiments carried out on human subjects at 7T, that the magnitude and phase of signals acquired from WM in vivo can be accurately characterized by (i) modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic magnetic susceptibility that is described by a tensor with a radially oriented principal axis, and (ii) adopting a two-pool model in which the water in the sheath has a reduced T ₂ relaxation time and spin density relative to its surroundings, and also undergoes exchange. The accuracy and intrinsic simplicity of the hollow cylinder model provides a versatile framework for future exploitation of the effect of WM microstructure on gradient echo contrast in clinical MRI.
doi_str_mv 10.1073/pnas.1211075109
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_45_18559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41829951</jstor_id><sourcerecordid>41829951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-6bcd7d94a5c2f6d57e27a7e053cb9411e0daae01fa3a4b60c1c78637bfb10d8d3</originalsourceid><addsrcrecordid>eNpdkUFvEzEQhS1ERUPgzAlYiQuXbWfW9q59QUIVgUqtKgE9W17bmzhK1sF2QPx7vEpIoRdbo_ne0xs9Ql4hXCB09HI36nSBDZaBI8gnZFZerFsm4SmZATRdLVjDzsnzlNYAILmAZ-S8oYUCxBlZLHzvYhWid2PW2Yextm7nRlvG6tfKZ1dtdc4FMWHMUadc-bFaRm0nQeXMKlS3X69fkLNBb5J7efzn5H7x6fvVl_rm7vP11ceb2nAuct32xnZWMs1NM7SWd67pdOeAU9NLhujAau0AB00161swaDrR0q4fegQrLJ2TDwff3b7fOmvclGmjdtFvdfytgvbq_83oV2oZfirKJJMoisH7o0EMP_YuZbX1ybjNRo8u7JNCZFS0HXJa0HeP0HXYx7GcN1GMQitK8Dm5PFAmhpSiG05hENTUkZo6Ug8dFcWbf2848X9LKUB1BCblg51UjCsUnE8erw_IOuUQTwxD0UjJJ4u3h_2gg9LL6JO6_9YAtgBIoeFA_wCa_asH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1144306805</pqid></control><display><type>article</type><title>Fiber orientation-dependent white matter contrast in gradient echo MRI</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wharton, Samuel ; Bowtell, Richard</creator><creatorcontrib>Wharton, Samuel ; Bowtell, Richard</creatorcontrib><description>Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to a new diagnostic tool for investigating tissue microstructure. Since it has been suggested that myelin is the dominant source of this contrast, creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the NMR signal is an essential step toward fully understanding WM contrast. In this study, we show by comparison of the results of simulations and experiments carried out on human subjects at 7T, that the magnitude and phase of signals acquired from WM in vivo can be accurately characterized by (i) modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic magnetic susceptibility that is described by a tensor with a radially oriented principal axis, and (ii) adopting a two-pool model in which the water in the sheath has a reduced T ₂ relaxation time and spin density relative to its surroundings, and also undergoes exchange. The accuracy and intrinsic simplicity of the hollow cylinder model provides a versatile framework for future exploitation of the effect of WM microstructure on gradient echo contrast in clinical MRI.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1211075109</identifier><identifier>PMID: 23091011</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Biological Sciences ; Brain - physiology ; Brain Mapping ; Cylinders ; Echo-Planar Imaging - methods ; evolution ; Fiber orientation ; Human subjects ; Humans ; Magnetic fields ; Magnetic permeability ; magnetic resonance imaging ; Male ; microstructure ; Modeling ; Models, Neurological ; Molecular structure ; Myelin ; Myelin sheath ; nerve fibers ; Nerve Fibers, Myelinated - physiology ; Neurons ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance spectroscopy ; Physical Sciences ; Simulation ; Time Factors ; Tissues ; Tracheoesophageal fistula ; White matter ; Young Adult</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18559-18564</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 6, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-6bcd7d94a5c2f6d57e27a7e053cb9411e0daae01fa3a4b60c1c78637bfb10d8d3</citedby><cites>FETCH-LOGICAL-c558t-6bcd7d94a5c2f6d57e27a7e053cb9411e0daae01fa3a4b60c1c78637bfb10d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41829951$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41829951$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23091011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wharton, Samuel</creatorcontrib><creatorcontrib>Bowtell, Richard</creatorcontrib><title>Fiber orientation-dependent white matter contrast in gradient echo MRI</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to a new diagnostic tool for investigating tissue microstructure. Since it has been suggested that myelin is the dominant source of this contrast, creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the NMR signal is an essential step toward fully understanding WM contrast. In this study, we show by comparison of the results of simulations and experiments carried out on human subjects at 7T, that the magnitude and phase of signals acquired from WM in vivo can be accurately characterized by (i) modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic magnetic susceptibility that is described by a tensor with a radially oriented principal axis, and (ii) adopting a two-pool model in which the water in the sheath has a reduced T ₂ relaxation time and spin density relative to its surroundings, and also undergoes exchange. The accuracy and intrinsic simplicity of the hollow cylinder model provides a versatile framework for future exploitation of the effect of WM microstructure on gradient echo contrast in clinical MRI.</description><subject>Adult</subject><subject>Biological Sciences</subject><subject>Brain - physiology</subject><subject>Brain Mapping</subject><subject>Cylinders</subject><subject>Echo-Planar Imaging - methods</subject><subject>evolution</subject><subject>Fiber orientation</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Magnetic fields</subject><subject>Magnetic permeability</subject><subject>magnetic resonance imaging</subject><subject>Male</subject><subject>microstructure</subject><subject>Modeling</subject><subject>Models, Neurological</subject><subject>Molecular structure</subject><subject>Myelin</subject><subject>Myelin sheath</subject><subject>nerve fibers</subject><subject>Nerve Fibers, Myelinated - physiology</subject><subject>Neurons</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Physical Sciences</subject><subject>Simulation</subject><subject>Time Factors</subject><subject>Tissues</subject><subject>Tracheoesophageal fistula</subject><subject>White matter</subject><subject>Young Adult</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFvEzEQhS1ERUPgzAlYiQuXbWfW9q59QUIVgUqtKgE9W17bmzhK1sF2QPx7vEpIoRdbo_ne0xs9Ql4hXCB09HI36nSBDZaBI8gnZFZerFsm4SmZATRdLVjDzsnzlNYAILmAZ-S8oYUCxBlZLHzvYhWid2PW2Yextm7nRlvG6tfKZ1dtdc4FMWHMUadc-bFaRm0nQeXMKlS3X69fkLNBb5J7efzn5H7x6fvVl_rm7vP11ceb2nAuct32xnZWMs1NM7SWd67pdOeAU9NLhujAau0AB00161swaDrR0q4fegQrLJ2TDwff3b7fOmvclGmjdtFvdfytgvbq_83oV2oZfirKJJMoisH7o0EMP_YuZbX1ybjNRo8u7JNCZFS0HXJa0HeP0HXYx7GcN1GMQitK8Dm5PFAmhpSiG05hENTUkZo6Ug8dFcWbf2848X9LKUB1BCblg51UjCsUnE8erw_IOuUQTwxD0UjJJ4u3h_2gg9LL6JO6_9YAtgBIoeFA_wCa_asH</recordid><startdate>20121106</startdate><enddate>20121106</enddate><creator>Wharton, Samuel</creator><creator>Bowtell, Richard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20121106</creationdate><title>Fiber orientation-dependent white matter contrast in gradient echo MRI</title><author>Wharton, Samuel ; Bowtell, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-6bcd7d94a5c2f6d57e27a7e053cb9411e0daae01fa3a4b60c1c78637bfb10d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Biological Sciences</topic><topic>Brain - physiology</topic><topic>Brain Mapping</topic><topic>Cylinders</topic><topic>Echo-Planar Imaging - methods</topic><topic>evolution</topic><topic>Fiber orientation</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Magnetic fields</topic><topic>Magnetic permeability</topic><topic>magnetic resonance imaging</topic><topic>Male</topic><topic>microstructure</topic><topic>Modeling</topic><topic>Models, Neurological</topic><topic>Molecular structure</topic><topic>Myelin</topic><topic>Myelin sheath</topic><topic>nerve fibers</topic><topic>Nerve Fibers, Myelinated - physiology</topic><topic>Neurons</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Physical Sciences</topic><topic>Simulation</topic><topic>Time Factors</topic><topic>Tissues</topic><topic>Tracheoesophageal fistula</topic><topic>White matter</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wharton, Samuel</creatorcontrib><creatorcontrib>Bowtell, Richard</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wharton, Samuel</au><au>Bowtell, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fiber orientation-dependent white matter contrast in gradient echo MRI</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-11-06</date><risdate>2012</risdate><volume>109</volume><issue>45</issue><spage>18559</spage><epage>18564</epage><pages>18559-18564</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is of great interest because it could offer access to a new diagnostic tool for investigating tissue microstructure. Since it has been suggested that myelin is the dominant source of this contrast, creating an accurate model for characterizing the effect of the myelin sheath on the evolution of the NMR signal is an essential step toward fully understanding WM contrast. In this study, we show by comparison of the results of simulations and experiments carried out on human subjects at 7T, that the magnitude and phase of signals acquired from WM in vivo can be accurately characterized by (i) modeling the myelin sheath as a hollow cylinder composed of material having an anisotropic magnetic susceptibility that is described by a tensor with a radially oriented principal axis, and (ii) adopting a two-pool model in which the water in the sheath has a reduced T ₂ relaxation time and spin density relative to its surroundings, and also undergoes exchange. The accuracy and intrinsic simplicity of the hollow cylinder model provides a versatile framework for future exploitation of the effect of WM microstructure on gradient echo contrast in clinical MRI.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23091011</pmid><doi>10.1073/pnas.1211075109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-11, Vol.109 (45), p.18559-18564
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_45_18559
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adult
Biological Sciences
Brain - physiology
Brain Mapping
Cylinders
Echo-Planar Imaging - methods
evolution
Fiber orientation
Human subjects
Humans
Magnetic fields
Magnetic permeability
magnetic resonance imaging
Male
microstructure
Modeling
Models, Neurological
Molecular structure
Myelin
Myelin sheath
nerve fibers
Nerve Fibers, Myelinated - physiology
Neurons
NMR
Nuclear magnetic resonance
nuclear magnetic resonance spectroscopy
Physical Sciences
Simulation
Time Factors
Tissues
Tracheoesophageal fistula
White matter
Young Adult
title Fiber orientation-dependent white matter contrast in gradient echo MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fiber%20orientation-dependent%20white%20matter%20contrast%20in%20gradient%20echo%20MRI&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wharton,%20Samuel&rft.date=2012-11-06&rft.volume=109&rft.issue=45&rft.spage=18559&rft.epage=18564&rft.pages=18559-18564&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1211075109&rft_dat=%3Cjstor_pnas_%3E41829951%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1144306805&rft_id=info:pmid/23091011&rft_jstor_id=41829951&rfr_iscdi=true