C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat
Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gra...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (30), p.12201-12206 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12206 |
---|---|
container_issue | 30 |
container_start_page | 12201 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Koch, Stephanie C Tochiki, Keri K Hirschberg, Stefan Fitzgerald, Maria |
description | Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α ₂ homomeric to predominantly mature α ₁/β glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber–mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits. |
doi_str_mv | 10.1073/pnas.1118960109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_30_12201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41684910</jstor_id><sourcerecordid>41684910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-e30e183ef16965a123aca5bbe0ea7a237773aca907700b1c690b632002f00ead3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAmIxIVL2rGd2PGlElrxJVXiAD1bTuLsepW1g-1U2v-eSXfZAhePNO83TzN-hLymcEVB8uvJm3RFKW2UAArqCVnhS0tRKXhKVgBMlk3FqgvyIqUdAKi6gefkgjEpmwrkivh1ObjWxsJ02d27fCh7O1nfW5-LvclzNNkFX4Sh2IyHznkbN64rnN-61j0ozhd5a4s0OW_Gog8xYdmG-DCzKFNI2ZuMXfR6SZ4NZkz21alekrvPn36uv5a33798W3-8Lbua1bm0HCxtuB2oUKI2lHHTmbptLVgjDeNSyqWjQEqAlnZCQSs4w3sHQKTnl-Tm6DvN7d72HZ4Tzain6PYmHnQwTv-reLfVm3CveQVKCoUGH04GMfyabcp671Jnx9F4G-akaQOcCsaaBX3_H7oLc8TfQAoDULgVr5C6PlJdDClFO5yXoaCXLPWSpX7MEife_n3Dmf8THgLFCVgmH-2U5mjJGFBE3hyRXcohnpmKiqZSFFB_d9QHE7TZRJf03Q8cFACUKVrV_DfgjLls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027900234</pqid></control><display><type>article</type><title>C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Koch, Stephanie C ; Tochiki, Keri K ; Hirschberg, Stefan ; Fitzgerald, Maria</creator><creatorcontrib>Koch, Stephanie C ; Tochiki, Keri K ; Hirschberg, Stefan ; Fitzgerald, Maria</creatorcontrib><description>Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α ₂ homomeric to predominantly mature α ₁/β glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber–mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1118960109</identifier><identifier>PMID: 22778407</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>anesthetics ; Animals ; Animals, Newborn - growth & development ; Animals, Newborn - metabolism ; Behavioral neuroscience ; Biological Sciences ; brain ; capsaicin ; Cells ; Glycine receptors ; Immunohistochemistry ; Interneurons ; Interneurons - metabolism ; lidocaine ; neonates ; Nerve Block ; Nerve Fibers, Unmyelinated - metabolism ; Neural Inhibition - physiology ; Neurons ; Posterior horn ; Posterior Horn Cells - metabolism ; Rats ; Receptors ; Receptors, Glycine - metabolism ; Rodents ; Sciatic Nerve ; Sensory perception ; Spinal cord ; Strychnine ; Synapses ; Touch Perception - physiology ; Unmyelinated nerve fibers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (30), p.12201-12206</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 24, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-e30e183ef16965a123aca5bbe0ea7a237773aca907700b1c690b632002f00ead3</citedby><cites>FETCH-LOGICAL-c525t-e30e183ef16965a123aca5bbe0ea7a237773aca907700b1c690b632002f00ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/30.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41684910$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41684910$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22778407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Stephanie C</creatorcontrib><creatorcontrib>Tochiki, Keri K</creatorcontrib><creatorcontrib>Hirschberg, Stefan</creatorcontrib><creatorcontrib>Fitzgerald, Maria</creatorcontrib><title>C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α ₂ homomeric to predominantly mature α ₁/β glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber–mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits.</description><subject>anesthetics</subject><subject>Animals</subject><subject>Animals, Newborn - growth & development</subject><subject>Animals, Newborn - metabolism</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>brain</subject><subject>capsaicin</subject><subject>Cells</subject><subject>Glycine receptors</subject><subject>Immunohistochemistry</subject><subject>Interneurons</subject><subject>Interneurons - metabolism</subject><subject>lidocaine</subject><subject>neonates</subject><subject>Nerve Block</subject><subject>Nerve Fibers, Unmyelinated - metabolism</subject><subject>Neural Inhibition - physiology</subject><subject>Neurons</subject><subject>Posterior horn</subject><subject>Posterior Horn Cells - metabolism</subject><subject>Rats</subject><subject>Receptors</subject><subject>Receptors, Glycine - metabolism</subject><subject>Rodents</subject><subject>Sciatic Nerve</subject><subject>Sensory perception</subject><subject>Spinal cord</subject><subject>Strychnine</subject><subject>Synapses</subject><subject>Touch Perception - physiology</subject><subject>Unmyelinated nerve fibers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAmIxIVL2rGd2PGlElrxJVXiAD1bTuLsepW1g-1U2v-eSXfZAhePNO83TzN-hLymcEVB8uvJm3RFKW2UAArqCVnhS0tRKXhKVgBMlk3FqgvyIqUdAKi6gefkgjEpmwrkivh1ObjWxsJ02d27fCh7O1nfW5-LvclzNNkFX4Sh2IyHznkbN64rnN-61j0ozhd5a4s0OW_Gog8xYdmG-DCzKFNI2ZuMXfR6SZ4NZkz21alekrvPn36uv5a33798W3-8Lbua1bm0HCxtuB2oUKI2lHHTmbptLVgjDeNSyqWjQEqAlnZCQSs4w3sHQKTnl-Tm6DvN7d72HZ4Tzain6PYmHnQwTv-reLfVm3CveQVKCoUGH04GMfyabcp671Jnx9F4G-akaQOcCsaaBX3_H7oLc8TfQAoDULgVr5C6PlJdDClFO5yXoaCXLPWSpX7MEife_n3Dmf8THgLFCVgmH-2U5mjJGFBE3hyRXcohnpmKiqZSFFB_d9QHE7TZRJf03Q8cFACUKVrV_DfgjLls</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>Koch, Stephanie C</creator><creator>Tochiki, Keri K</creator><creator>Hirschberg, Stefan</creator><creator>Fitzgerald, Maria</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120724</creationdate><title>C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat</title><author>Koch, Stephanie C ; Tochiki, Keri K ; Hirschberg, Stefan ; Fitzgerald, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-e30e183ef16965a123aca5bbe0ea7a237773aca907700b1c690b632002f00ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>anesthetics</topic><topic>Animals</topic><topic>Animals, Newborn - growth & development</topic><topic>Animals, Newborn - metabolism</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>brain</topic><topic>capsaicin</topic><topic>Cells</topic><topic>Glycine receptors</topic><topic>Immunohistochemistry</topic><topic>Interneurons</topic><topic>Interneurons - metabolism</topic><topic>lidocaine</topic><topic>neonates</topic><topic>Nerve Block</topic><topic>Nerve Fibers, Unmyelinated - metabolism</topic><topic>Neural Inhibition - physiology</topic><topic>Neurons</topic><topic>Posterior horn</topic><topic>Posterior Horn Cells - metabolism</topic><topic>Rats</topic><topic>Receptors</topic><topic>Receptors, Glycine - metabolism</topic><topic>Rodents</topic><topic>Sciatic Nerve</topic><topic>Sensory perception</topic><topic>Spinal cord</topic><topic>Strychnine</topic><topic>Synapses</topic><topic>Touch Perception - physiology</topic><topic>Unmyelinated nerve fibers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Stephanie C</creatorcontrib><creatorcontrib>Tochiki, Keri K</creatorcontrib><creatorcontrib>Hirschberg, Stefan</creatorcontrib><creatorcontrib>Fitzgerald, Maria</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Stephanie C</au><au>Tochiki, Keri K</au><au>Hirschberg, Stefan</au><au>Fitzgerald, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-24</date><risdate>2012</risdate><volume>109</volume><issue>30</issue><spage>12201</spage><epage>12206</epage><pages>12201-12206</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α ₂ homomeric to predominantly mature α ₁/β glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber–mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22778407</pmid><doi>10.1073/pnas.1118960109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (30), p.12201-12206 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_109_30_12201 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | anesthetics Animals Animals, Newborn - growth & development Animals, Newborn - metabolism Behavioral neuroscience Biological Sciences brain capsaicin Cells Glycine receptors Immunohistochemistry Interneurons Interneurons - metabolism lidocaine neonates Nerve Block Nerve Fibers, Unmyelinated - metabolism Neural Inhibition - physiology Neurons Posterior horn Posterior Horn Cells - metabolism Rats Receptors Receptors, Glycine - metabolism Rodents Sciatic Nerve Sensory perception Spinal cord Strychnine Synapses Touch Perception - physiology Unmyelinated nerve fibers |
title | C-fiber activity-dependent maturation of glycinergic inhibition in the spinal dorsal horn of the postnatal rat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C-fiber%20activity-dependent%20maturation%20of%20glycinergic%20inhibition%20in%20the%20spinal%20dorsal%20horn%20of%20the%20postnatal%20rat&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Koch,%20Stephanie%20C&rft.date=2012-07-24&rft.volume=109&rft.issue=30&rft.spage=12201&rft.epage=12206&rft.pages=12201-12206&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1118960109&rft_dat=%3Cjstor_pnas_%3E41684910%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027900234&rft_id=info:pmid/22778407&rft_jstor_id=41684910&rfr_iscdi=true |