Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis

Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-06, Vol.109 (24), p.9448-9453
Hauptverfasser: Kisseleva, Tatiana, Cong, Min, Paik, YongHan, Scholten, David, Jiang, Chunyan, Benner, Chris, Iwaisako, Keiko, Moore-Morris, Thomas, Scott, Brian, Tsukamoto, Hidekazu, Evans, Sylvia M, Dillmann, Wolfgang, Glass, Christopher K, Brenner, David A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9453
container_issue 24
container_start_page 9448
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Kisseleva, Tatiana
Cong, Min
Paik, YongHan
Scholten, David
Jiang, Chunyan
Benner, Chris
Iwaisako, Keiko
Moore-Morris, Thomas
Scott, Brian
Tsukamoto, Hidekazu
Evans, Sylvia M
Dillmann, Wolfgang
Glass, Christopher K
Brenner, David A
description Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.
doi_str_mv 10.1073/pnas.1201840109
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_24_9448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41602683</jstor_id><sourcerecordid>41602683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhi0EYsvCmRNgiQuX7I4_6jgXJLTiS1qEBOzZcpJJ11VqB9up1H-PS0sLXGzJfubxjF9CnjO4YlCL68nbdMU4MC2BQfOALMrKKiUbeEgWALyutOTygjxJaQ0AzVLDY3LB-VIpxZsF-fZlFwbXxtCONuVEI24xZpoDtZ46b7vstkine_Qh7yak_RydXxVsFTElFzwNAx0LE-lvTXLpKXk02DHhs-N-Se4-vP9x86m6_frx882726pTIHLVtdKiGgRj0upOWMuQczVIWWM5E73UuKxbZK2uW9HbmoGVNbdCK4m9KopL8vbgneZ2g32HPkc7mim6jY07E6wz_954d29WYWtEcZRXi-DNURDDzxlTNhuXOhxH6zHMyTDgsIRGaF7Q1_-h6zBHX8Y7UEo1wAp1faC68hEp4nBqhoHZ52X2eZlzXqXi5d8znPg_ARXg1RHYV551jeHSNFLqQrw4EOuUQzwhkingSouzYbDB2FV0ydx9Lx0oAMZ1zWvxCwjAr2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020566901</pqid></control><display><type>article</type><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</creator><creatorcontrib>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</creatorcontrib><description>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1201840109</identifier><identifier>PMID: 22566629</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adoptive Transfer ; Animals ; Apoptosis ; Biological Sciences ; carbon tetrachloride ; Cells ; Collagen Type I - metabolism ; Collagens ; etiological agents ; Fibrosis ; gene expression regulation ; genes ; Genetics ; Genotype &amp; phenotype ; Hepatic stellate cells ; Hepatocytes ; Liver ; Liver cells ; liver cirrhosis ; Liver Cirrhosis - metabolism ; Liver Cirrhosis - pathology ; Mice ; Myofibroblasts ; Myofibroblasts - cytology ; Myofibroblasts - drug effects ; Myofibroblasts - metabolism ; Phenotype ; Phenotypes ; Regression analysis ; Tamoxifen - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-06, Vol.109 (24), p.9448-9453</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 12, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</citedby><cites>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41602683$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41602683$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kisseleva, Tatiana</creatorcontrib><creatorcontrib>Cong, Min</creatorcontrib><creatorcontrib>Paik, YongHan</creatorcontrib><creatorcontrib>Scholten, David</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Benner, Chris</creatorcontrib><creatorcontrib>Iwaisako, Keiko</creatorcontrib><creatorcontrib>Moore-Morris, Thomas</creatorcontrib><creatorcontrib>Scott, Brian</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Evans, Sylvia M</creatorcontrib><creatorcontrib>Dillmann, Wolfgang</creatorcontrib><creatorcontrib>Glass, Christopher K</creatorcontrib><creatorcontrib>Brenner, David A</creatorcontrib><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</description><subject>Adoptive Transfer</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>carbon tetrachloride</subject><subject>Cells</subject><subject>Collagen Type I - metabolism</subject><subject>Collagens</subject><subject>etiological agents</subject><subject>Fibrosis</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Genetics</subject><subject>Genotype &amp; phenotype</subject><subject>Hepatic stellate cells</subject><subject>Hepatocytes</subject><subject>Liver</subject><subject>Liver cells</subject><subject>liver cirrhosis</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Liver Cirrhosis - pathology</subject><subject>Mice</subject><subject>Myofibroblasts</subject><subject>Myofibroblasts - cytology</subject><subject>Myofibroblasts - drug effects</subject><subject>Myofibroblasts - metabolism</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Regression analysis</subject><subject>Tamoxifen - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQhi0EYsvCmRNgiQuX7I4_6jgXJLTiS1qEBOzZcpJJ11VqB9up1H-PS0sLXGzJfubxjF9CnjO4YlCL68nbdMU4MC2BQfOALMrKKiUbeEgWALyutOTygjxJaQ0AzVLDY3LB-VIpxZsF-fZlFwbXxtCONuVEI24xZpoDtZ46b7vstkine_Qh7yak_RydXxVsFTElFzwNAx0LE-lvTXLpKXk02DHhs-N-Se4-vP9x86m6_frx882726pTIHLVtdKiGgRj0upOWMuQczVIWWM5E73UuKxbZK2uW9HbmoGVNbdCK4m9KopL8vbgneZ2g32HPkc7mim6jY07E6wz_954d29WYWtEcZRXi-DNURDDzxlTNhuXOhxH6zHMyTDgsIRGaF7Q1_-h6zBHX8Y7UEo1wAp1faC68hEp4nBqhoHZ52X2eZlzXqXi5d8znPg_ARXg1RHYV551jeHSNFLqQrw4EOuUQzwhkingSouzYbDB2FV0ydx9Lx0oAMZ1zWvxCwjAr2Q</recordid><startdate>20120612</startdate><enddate>20120612</enddate><creator>Kisseleva, Tatiana</creator><creator>Cong, Min</creator><creator>Paik, YongHan</creator><creator>Scholten, David</creator><creator>Jiang, Chunyan</creator><creator>Benner, Chris</creator><creator>Iwaisako, Keiko</creator><creator>Moore-Morris, Thomas</creator><creator>Scott, Brian</creator><creator>Tsukamoto, Hidekazu</creator><creator>Evans, Sylvia M</creator><creator>Dillmann, Wolfgang</creator><creator>Glass, Christopher K</creator><creator>Brenner, David A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120612</creationdate><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><author>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adoptive Transfer</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>carbon tetrachloride</topic><topic>Cells</topic><topic>Collagen Type I - metabolism</topic><topic>Collagens</topic><topic>etiological agents</topic><topic>Fibrosis</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Genetics</topic><topic>Genotype &amp; phenotype</topic><topic>Hepatic stellate cells</topic><topic>Hepatocytes</topic><topic>Liver</topic><topic>Liver cells</topic><topic>liver cirrhosis</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Liver Cirrhosis - pathology</topic><topic>Mice</topic><topic>Myofibroblasts</topic><topic>Myofibroblasts - cytology</topic><topic>Myofibroblasts - drug effects</topic><topic>Myofibroblasts - metabolism</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Regression analysis</topic><topic>Tamoxifen - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisseleva, Tatiana</creatorcontrib><creatorcontrib>Cong, Min</creatorcontrib><creatorcontrib>Paik, YongHan</creatorcontrib><creatorcontrib>Scholten, David</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Benner, Chris</creatorcontrib><creatorcontrib>Iwaisako, Keiko</creatorcontrib><creatorcontrib>Moore-Morris, Thomas</creatorcontrib><creatorcontrib>Scott, Brian</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Evans, Sylvia M</creatorcontrib><creatorcontrib>Dillmann, Wolfgang</creatorcontrib><creatorcontrib>Glass, Christopher K</creatorcontrib><creatorcontrib>Brenner, David A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisseleva, Tatiana</au><au>Cong, Min</au><au>Paik, YongHan</au><au>Scholten, David</au><au>Jiang, Chunyan</au><au>Benner, Chris</au><au>Iwaisako, Keiko</au><au>Moore-Morris, Thomas</au><au>Scott, Brian</au><au>Tsukamoto, Hidekazu</au><au>Evans, Sylvia M</au><au>Dillmann, Wolfgang</au><au>Glass, Christopher K</au><au>Brenner, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-06-12</date><risdate>2012</risdate><volume>109</volume><issue>24</issue><spage>9448</spage><epage>9453</epage><pages>9448-9453</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22566629</pmid><doi>10.1073/pnas.1201840109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-06, Vol.109 (24), p.9448-9453
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_24_9448
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adoptive Transfer
Animals
Apoptosis
Biological Sciences
carbon tetrachloride
Cells
Collagen Type I - metabolism
Collagens
etiological agents
Fibrosis
gene expression regulation
genes
Genetics
Genotype & phenotype
Hepatic stellate cells
Hepatocytes
Liver
Liver cells
liver cirrhosis
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Mice
Myofibroblasts
Myofibroblasts - cytology
Myofibroblasts - drug effects
Myofibroblasts - metabolism
Phenotype
Phenotypes
Regression analysis
Tamoxifen - pharmacology
title Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myofibroblasts%20revert%20to%20an%20inactive%20phenotype%20during%20regression%20of%20liver%20fibrosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kisseleva,%20Tatiana&rft.date=2012-06-12&rft.volume=109&rft.issue=24&rft.spage=9448&rft.epage=9453&rft.pages=9448-9453&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1201840109&rft_dat=%3Cjstor_pnas_%3E41602683%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020566901&rft_id=info:pmid/22566629&rft_jstor_id=41602683&rfr_iscdi=true