Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a re...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2012-06, Vol.109 (24), p.9448-9453 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9453 |
---|---|
container_issue | 24 |
container_start_page | 9448 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Kisseleva, Tatiana Cong, Min Paik, YongHan Scholten, David Jiang, Chunyan Benner, Chris Iwaisako, Keiko Moore-Morris, Thomas Scott, Brian Tsukamoto, Hidekazu Evans, Sylvia M Dillmann, Wolfgang Glass, Christopher K Brenner, David A |
description | Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo. |
doi_str_mv | 10.1073/pnas.1201840109 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_24_9448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41602683</jstor_id><sourcerecordid>41602683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhi0EYsvCmRNgiQuX7I4_6jgXJLTiS1qEBOzZcpJJ11VqB9up1H-PS0sLXGzJfubxjF9CnjO4YlCL68nbdMU4MC2BQfOALMrKKiUbeEgWALyutOTygjxJaQ0AzVLDY3LB-VIpxZsF-fZlFwbXxtCONuVEI24xZpoDtZ46b7vstkine_Qh7yak_RydXxVsFTElFzwNAx0LE-lvTXLpKXk02DHhs-N-Se4-vP9x86m6_frx882726pTIHLVtdKiGgRj0upOWMuQczVIWWM5E73UuKxbZK2uW9HbmoGVNbdCK4m9KopL8vbgneZ2g32HPkc7mim6jY07E6wz_954d29WYWtEcZRXi-DNURDDzxlTNhuXOhxH6zHMyTDgsIRGaF7Q1_-h6zBHX8Y7UEo1wAp1faC68hEp4nBqhoHZ52X2eZlzXqXi5d8znPg_ARXg1RHYV551jeHSNFLqQrw4EOuUQzwhkingSouzYbDB2FV0ydx9Lx0oAMZ1zWvxCwjAr2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020566901</pqid></control><display><type>article</type><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</creator><creatorcontrib>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</creatorcontrib><description>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1201840109</identifier><identifier>PMID: 22566629</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adoptive Transfer ; Animals ; Apoptosis ; Biological Sciences ; carbon tetrachloride ; Cells ; Collagen Type I - metabolism ; Collagens ; etiological agents ; Fibrosis ; gene expression regulation ; genes ; Genetics ; Genotype & phenotype ; Hepatic stellate cells ; Hepatocytes ; Liver ; Liver cells ; liver cirrhosis ; Liver Cirrhosis - metabolism ; Liver Cirrhosis - pathology ; Mice ; Myofibroblasts ; Myofibroblasts - cytology ; Myofibroblasts - drug effects ; Myofibroblasts - metabolism ; Phenotype ; Phenotypes ; Regression analysis ; Tamoxifen - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-06, Vol.109 (24), p.9448-9453</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 12, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</citedby><cites>FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41602683$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41602683$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22566629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kisseleva, Tatiana</creatorcontrib><creatorcontrib>Cong, Min</creatorcontrib><creatorcontrib>Paik, YongHan</creatorcontrib><creatorcontrib>Scholten, David</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Benner, Chris</creatorcontrib><creatorcontrib>Iwaisako, Keiko</creatorcontrib><creatorcontrib>Moore-Morris, Thomas</creatorcontrib><creatorcontrib>Scott, Brian</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Evans, Sylvia M</creatorcontrib><creatorcontrib>Dillmann, Wolfgang</creatorcontrib><creatorcontrib>Glass, Christopher K</creatorcontrib><creatorcontrib>Brenner, David A</creatorcontrib><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</description><subject>Adoptive Transfer</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>carbon tetrachloride</subject><subject>Cells</subject><subject>Collagen Type I - metabolism</subject><subject>Collagens</subject><subject>etiological agents</subject><subject>Fibrosis</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>Genetics</subject><subject>Genotype & phenotype</subject><subject>Hepatic stellate cells</subject><subject>Hepatocytes</subject><subject>Liver</subject><subject>Liver cells</subject><subject>liver cirrhosis</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Liver Cirrhosis - pathology</subject><subject>Mice</subject><subject>Myofibroblasts</subject><subject>Myofibroblasts - cytology</subject><subject>Myofibroblasts - drug effects</subject><subject>Myofibroblasts - metabolism</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Regression analysis</subject><subject>Tamoxifen - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2P0zAQhi0EYsvCmRNgiQuX7I4_6jgXJLTiS1qEBOzZcpJJ11VqB9up1H-PS0sLXGzJfubxjF9CnjO4YlCL68nbdMU4MC2BQfOALMrKKiUbeEgWALyutOTygjxJaQ0AzVLDY3LB-VIpxZsF-fZlFwbXxtCONuVEI24xZpoDtZ46b7vstkine_Qh7yak_RydXxVsFTElFzwNAx0LE-lvTXLpKXk02DHhs-N-Se4-vP9x86m6_frx882726pTIHLVtdKiGgRj0upOWMuQczVIWWM5E73UuKxbZK2uW9HbmoGVNbdCK4m9KopL8vbgneZ2g32HPkc7mim6jY07E6wz_954d29WYWtEcZRXi-DNURDDzxlTNhuXOhxH6zHMyTDgsIRGaF7Q1_-h6zBHX8Y7UEo1wAp1faC68hEp4nBqhoHZ52X2eZlzXqXi5d8znPg_ARXg1RHYV551jeHSNFLqQrw4EOuUQzwhkingSouzYbDB2FV0ydx9Lx0oAMZ1zWvxCwjAr2Q</recordid><startdate>20120612</startdate><enddate>20120612</enddate><creator>Kisseleva, Tatiana</creator><creator>Cong, Min</creator><creator>Paik, YongHan</creator><creator>Scholten, David</creator><creator>Jiang, Chunyan</creator><creator>Benner, Chris</creator><creator>Iwaisako, Keiko</creator><creator>Moore-Morris, Thomas</creator><creator>Scott, Brian</creator><creator>Tsukamoto, Hidekazu</creator><creator>Evans, Sylvia M</creator><creator>Dillmann, Wolfgang</creator><creator>Glass, Christopher K</creator><creator>Brenner, David A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120612</creationdate><title>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</title><author>Kisseleva, Tatiana ; Cong, Min ; Paik, YongHan ; Scholten, David ; Jiang, Chunyan ; Benner, Chris ; Iwaisako, Keiko ; Moore-Morris, Thomas ; Scott, Brian ; Tsukamoto, Hidekazu ; Evans, Sylvia M ; Dillmann, Wolfgang ; Glass, Christopher K ; Brenner, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c603t-cb4ae6f3114a8c3aa1e226f447e3113d48e57be1b87b3da710a472a3864ed6603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adoptive Transfer</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>carbon tetrachloride</topic><topic>Cells</topic><topic>Collagen Type I - metabolism</topic><topic>Collagens</topic><topic>etiological agents</topic><topic>Fibrosis</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>Genetics</topic><topic>Genotype & phenotype</topic><topic>Hepatic stellate cells</topic><topic>Hepatocytes</topic><topic>Liver</topic><topic>Liver cells</topic><topic>liver cirrhosis</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Liver Cirrhosis - pathology</topic><topic>Mice</topic><topic>Myofibroblasts</topic><topic>Myofibroblasts - cytology</topic><topic>Myofibroblasts - drug effects</topic><topic>Myofibroblasts - metabolism</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Regression analysis</topic><topic>Tamoxifen - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisseleva, Tatiana</creatorcontrib><creatorcontrib>Cong, Min</creatorcontrib><creatorcontrib>Paik, YongHan</creatorcontrib><creatorcontrib>Scholten, David</creatorcontrib><creatorcontrib>Jiang, Chunyan</creatorcontrib><creatorcontrib>Benner, Chris</creatorcontrib><creatorcontrib>Iwaisako, Keiko</creatorcontrib><creatorcontrib>Moore-Morris, Thomas</creatorcontrib><creatorcontrib>Scott, Brian</creatorcontrib><creatorcontrib>Tsukamoto, Hidekazu</creatorcontrib><creatorcontrib>Evans, Sylvia M</creatorcontrib><creatorcontrib>Dillmann, Wolfgang</creatorcontrib><creatorcontrib>Glass, Christopher K</creatorcontrib><creatorcontrib>Brenner, David A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisseleva, Tatiana</au><au>Cong, Min</au><au>Paik, YongHan</au><au>Scholten, David</au><au>Jiang, Chunyan</au><au>Benner, Chris</au><au>Iwaisako, Keiko</au><au>Moore-Morris, Thomas</au><au>Scott, Brian</au><au>Tsukamoto, Hidekazu</au><au>Evans, Sylvia M</au><au>Dillmann, Wolfgang</au><au>Glass, Christopher K</au><au>Brenner, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-06-12</date><risdate>2012</risdate><volume>109</volume><issue>24</issue><spage>9448</spage><epage>9453</epage><pages>9448-9453</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Myofibroblasts produce the fibrous scar in hepatic fibrosis. In the carbon tetrachloride (CCl ₄) model of liver fibrosis, quiescent hepatic stellate cells (HSC) are activated to become myofibroblasts. When the underlying etiological agent is removed, clinical and experimental fibrosis undergoes a remarkable regression with complete disappearance of these myofibroblasts. Although some myofibroblasts apoptose, it is unknown whether other myofibroblasts may revert to an inactive phenotype during regression of fibrosis. We elucidated the fate of HSCs/myofibroblasts during recovery from CCl ₄- and alcohol-induced liver fibrosis using Cre-LoxP–based genetic labeling of myofibroblasts. Here we demonstrate that half of the myofibroblasts escape apoptosis during regression of liver fibrosis, down-regulate fibrogenic genes, and acquire a phenotype similar to, but distinct from, quiescent HSCs in their ability to more rapidly reactivate into myofibroblasts in response to fibrogenic stimuli and strongly contribute to liver fibrosis. Inactivation of HSCs was associated with up-regulation of the anti-apoptotic genes Hspa1a/b, which participate in the survival of HSCs in culture and in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22566629</pmid><doi>10.1073/pnas.1201840109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-06, Vol.109 (24), p.9448-9453 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_109_24_9448 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adoptive Transfer Animals Apoptosis Biological Sciences carbon tetrachloride Cells Collagen Type I - metabolism Collagens etiological agents Fibrosis gene expression regulation genes Genetics Genotype & phenotype Hepatic stellate cells Hepatocytes Liver Liver cells liver cirrhosis Liver Cirrhosis - metabolism Liver Cirrhosis - pathology Mice Myofibroblasts Myofibroblasts - cytology Myofibroblasts - drug effects Myofibroblasts - metabolism Phenotype Phenotypes Regression analysis Tamoxifen - pharmacology |
title | Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A38%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myofibroblasts%20revert%20to%20an%20inactive%20phenotype%20during%20regression%20of%20liver%20fibrosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kisseleva,%20Tatiana&rft.date=2012-06-12&rft.volume=109&rft.issue=24&rft.spage=9448&rft.epage=9453&rft.pages=9448-9453&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1201840109&rft_dat=%3Cjstor_pnas_%3E41602683%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020566901&rft_id=info:pmid/22566629&rft_jstor_id=41602683&rfr_iscdi=true |