Atom-by-atom nucleation and growth of graphene nanopores

Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-04, Vol.109 (16), p.5953-5957
Hauptverfasser: Russo, Christopher J, Golovchenko, J. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5957
container_issue 16
container_start_page 5953
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Russo, Christopher J
Golovchenko, J. A
description Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as 3 Å, which corresponds to 10 atoms removed. We observe carbon atom removal from the nanopore edge in situ using an aberration-corrected electron microscope, measure the cross-section for the process, and obtain a mean edge atom displacement energy of 14.1 ± 0.1 eV. This approach does not require focused beams and allows scalable production of single nanopores and arrays of monodisperse nanopores for atomic-scale selectively permeable membranes.
doi_str_mv 10.1073/pnas.1119827109
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_16_5953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41588454</jstor_id><sourcerecordid>41588454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-6969b02812fb2421171bfa833fa072dffff7f13d1107539d23837ee7ff998f393</originalsourceid><addsrcrecordid>eNpVkctrGzEQxkVpaZzHuae2CzlvMqPHSroEQsgLAj20OQutV7LX2NJGWrfkv4-MXTuZg0ag33wz-oaQbwgXCJJdDsHmC0TUikoE_YlMyol1wzV8JhMAKmvFKT8ixzkvAEALBV_JEaVcUy3FhKjrMa7q9rW2JVdhPV06O_YxVDZ01SzFf-O8ir7c7DB3wVXBhjjE5PIp-eLtMruzXT4hz3e3f24e6qdf948310_1VAg51o1udAtUIfUt5RRRYuutYsxbkLTzJaRH1mH5jmC6o0wx6Zz0XmvlmWYn5GqrO6zbleumLozJLs2Q-pVNryba3nx8Cf3czOJfwxgHrXkRON8JpPiydnk0i7hOocxsEEA1vNGiKdTllpqmmHNyft8BwWysNhurzcHqUvHj_WB7_r-3Bfi5AzaVBzltsDFCC1aI71tikceY9ghHoRQX_KDgbTR2lvpsnn9TQF42WYylyN4AE4eW-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008646956</pqid></control><display><type>article</type><title>Atom-by-atom nucleation and growth of graphene nanopores</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Russo, Christopher J ; Golovchenko, J. A</creator><creatorcontrib>Russo, Christopher J ; Golovchenko, J. A</creatorcontrib><description>Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as 3 Å, which corresponds to 10 atoms removed. We observe carbon atom removal from the nanopore edge in situ using an aberration-corrected electron microscope, measure the cross-section for the process, and obtain a mean edge atom displacement energy of 14.1 ± 0.1 eV. This approach does not require focused beams and allows scalable production of single nanopores and arrays of monodisperse nanopores for atomic-scale selectively permeable membranes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1119827109</identifier><identifier>PMID: 22492975</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Argon ; artificial membranes ; Atoms ; Atoms &amp; subatomic particles ; Carbon ; Computer Simulation ; Electron beams ; electron microscopes ; Electrons ; energy ; Energy Transfer ; Graphene ; Graphite - chemistry ; Ion beams ; Ions ; Irradiation ; Membranes ; Microscopy ; Microscopy, Electron, Transmission - methods ; Models, Chemical ; Models, Molecular ; Molecules ; nanomaterials ; Nanopores - ultrastructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Nucleation ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5953-5957</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 17, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-6969b02812fb2421171bfa833fa072dffff7f13d1107539d23837ee7ff998f393</citedby><cites>FETCH-LOGICAL-c557t-6969b02812fb2421171bfa833fa072dffff7f13d1107539d23837ee7ff998f393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41588454$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41588454$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22492975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Russo, Christopher J</creatorcontrib><creatorcontrib>Golovchenko, J. A</creatorcontrib><title>Atom-by-atom nucleation and growth of graphene nanopores</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as 3 Å, which corresponds to 10 atoms removed. We observe carbon atom removal from the nanopore edge in situ using an aberration-corrected electron microscope, measure the cross-section for the process, and obtain a mean edge atom displacement energy of 14.1 ± 0.1 eV. This approach does not require focused beams and allows scalable production of single nanopores and arrays of monodisperse nanopores for atomic-scale selectively permeable membranes.</description><subject>Argon</subject><subject>artificial membranes</subject><subject>Atoms</subject><subject>Atoms &amp; subatomic particles</subject><subject>Carbon</subject><subject>Computer Simulation</subject><subject>Electron beams</subject><subject>electron microscopes</subject><subject>Electrons</subject><subject>energy</subject><subject>Energy Transfer</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Ion beams</subject><subject>Ions</subject><subject>Irradiation</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Microscopy, Electron, Transmission - methods</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>nanomaterials</subject><subject>Nanopores - ultrastructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleation</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctrGzEQxkVpaZzHuae2CzlvMqPHSroEQsgLAj20OQutV7LX2NJGWrfkv4-MXTuZg0ag33wz-oaQbwgXCJJdDsHmC0TUikoE_YlMyol1wzV8JhMAKmvFKT8ixzkvAEALBV_JEaVcUy3FhKjrMa7q9rW2JVdhPV06O_YxVDZ01SzFf-O8ir7c7DB3wVXBhjjE5PIp-eLtMruzXT4hz3e3f24e6qdf948310_1VAg51o1udAtUIfUt5RRRYuutYsxbkLTzJaRH1mH5jmC6o0wx6Zz0XmvlmWYn5GqrO6zbleumLozJLs2Q-pVNryba3nx8Cf3czOJfwxgHrXkRON8JpPiydnk0i7hOocxsEEA1vNGiKdTllpqmmHNyft8BwWysNhurzcHqUvHj_WB7_r-3Bfi5AzaVBzltsDFCC1aI71tikceY9ghHoRQX_KDgbTR2lvpsnn9TQF42WYylyN4AE4eW-A</recordid><startdate>20120417</startdate><enddate>20120417</enddate><creator>Russo, Christopher J</creator><creator>Golovchenko, J. A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20120417</creationdate><title>Atom-by-atom nucleation and growth of graphene nanopores</title><author>Russo, Christopher J ; Golovchenko, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-6969b02812fb2421171bfa833fa072dffff7f13d1107539d23837ee7ff998f393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Argon</topic><topic>artificial membranes</topic><topic>Atoms</topic><topic>Atoms &amp; subatomic particles</topic><topic>Carbon</topic><topic>Computer Simulation</topic><topic>Electron beams</topic><topic>electron microscopes</topic><topic>Electrons</topic><topic>energy</topic><topic>Energy Transfer</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Ion beams</topic><topic>Ions</topic><topic>Irradiation</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Microscopy, Electron, Transmission - methods</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>nanomaterials</topic><topic>Nanopores - ultrastructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleation</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Christopher J</creatorcontrib><creatorcontrib>Golovchenko, J. A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russo, Christopher J</au><au>Golovchenko, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-by-atom nucleation and growth of graphene nanopores</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-04-17</date><risdate>2012</risdate><volume>109</volume><issue>16</issue><spage>5953</spage><epage>5957</epage><pages>5953-5957</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Graphene is an ideal thin membrane substrate for creating molecule-scale devices. Here we demonstrate a scalable method for creating extremely small structures in graphene with atomic precision. It consists of inducing defect nucleation centers with energetic ions, followed by edge-selective electron recoil sputtering. As a first application, we create graphene nanopores with radii as small as 3 Å, which corresponds to 10 atoms removed. We observe carbon atom removal from the nanopore edge in situ using an aberration-corrected electron microscope, measure the cross-section for the process, and obtain a mean edge atom displacement energy of 14.1 ± 0.1 eV. This approach does not require focused beams and allows scalable production of single nanopores and arrays of monodisperse nanopores for atomic-scale selectively permeable membranes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22492975</pmid><doi>10.1073/pnas.1119827109</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-04, Vol.109 (16), p.5953-5957
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_16_5953
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Argon
artificial membranes
Atoms
Atoms & subatomic particles
Carbon
Computer Simulation
Electron beams
electron microscopes
Electrons
energy
Energy Transfer
Graphene
Graphite - chemistry
Ion beams
Ions
Irradiation
Membranes
Microscopy
Microscopy, Electron, Transmission - methods
Models, Chemical
Models, Molecular
Molecules
nanomaterials
Nanopores - ultrastructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - methods
Nucleation
Physical Sciences
title Atom-by-atom nucleation and growth of graphene nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-by-atom%20nucleation%20and%20growth%20of%20graphene%20nanopores&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Russo,%20Christopher%20J&rft.date=2012-04-17&rft.volume=109&rft.issue=16&rft.spage=5953&rft.epage=5957&rft.pages=5953-5957&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1119827109&rft_dat=%3Cjstor_pnas_%3E41588454%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008646956&rft_id=info:pmid/22492975&rft_jstor_id=41588454&rfr_iscdi=true