Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry

Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-02, Vol.108 (5), p.1810-1814
Hauptverfasser: Fischer, Steffen, Exner, Alexander, Zielske, Kathrin, Perlich, Jan, Deloudi, Sofia, Steurer, Walter, Lindner, Peter, Förster, Stephan, Clark, Noel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1814
container_issue 5
container_start_page 1810
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Fischer, Steffen
Exner, Alexander
Zielske, Kathrin
Perlich, Jan
Deloudi, Sofia
Steurer, Walter
Lindner, Peter
Förster, Stephan
Clark, Noel A.
description Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fee phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques.
doi_str_mv 10.1073/pnas.1008695108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_5_1810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41001773</jstor_id><sourcerecordid>41001773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-be2a84aece8770e1e9f323eb16452b19f5a31e2ad8bf9bb03b76935e9e2ba9c53</originalsourceid><addsrcrecordid>eNpdkUtr3DAUhUVoaSZp1121mG6ycnOvHra0KYQhj0Kgm3YtJFtONNjWRLIT5t9XZtJJmpUu6DvnPg4hnxG-I9TsfDualCuQlRII8oisEBSWFVfwjqwAaF1KTvkxOUlpAwBKSPhAjilSyjnKFblch74PvjV98TCb5Ju4S5PpU_Hkp_sCadmFvi3M2BYo93Xruy6aZvJhLNJuGNwUdx_J-y6L3Kfn95T8ubr8vb4pb39d_1xf3JYNr_hUWkeN5MY1TtY1OHSqY5Q5ixUX1KLqhGGYmVbaTlkLzNaVYsIpR61RjWCn5MfedzvbwbWNG6doer2NfjBxp4Px-v-f0d_ru_CoGTBGK54Nzp4NYniYXZr04FPj-t6MLsxJy3w4pKKqMvntDbkJcxzzdgskgKp6sTvfQ00MKUXXHUZB0EtAeglIvwSUFV9fb3Dg_yXyCliUL3ZSC40SIQNf9sAmTSEeCJ6bYF0z9heZ2aBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849502974</pqid></control><display><type>article</type><title>Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fischer, Steffen ; Exner, Alexander ; Zielske, Kathrin ; Perlich, Jan ; Deloudi, Sofia ; Steurer, Walter ; Lindner, Peter ; Förster, Stephan ; Clark, Noel A.</creator><creatorcontrib>Fischer, Steffen ; Exner, Alexander ; Zielske, Kathrin ; Perlich, Jan ; Deloudi, Sofia ; Steurer, Walter ; Lindner, Peter ; Förster, Stephan ; Clark, Noel A.</creatorcontrib><description>Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fee phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1008695108</identifier><identifier>PMID: 21224418</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aqueous solutions ; Atoms &amp; subatomic particles ; Crystal structure ; Crystallography ; Diffraction ; Diffraction patterns ; Diffusion ; Fees ; Materials ; Micelles ; Photonics ; Physical Sciences ; Polymers ; Symmetry ; Synchrotrons ; Tiling ; Wave diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (5), p.1810-1814</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 1, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-be2a84aece8770e1e9f323eb16452b19f5a31e2ad8bf9bb03b76935e9e2ba9c53</citedby><cites>FETCH-LOGICAL-c464t-be2a84aece8770e1e9f323eb16452b19f5a31e2ad8bf9bb03b76935e9e2ba9c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41001773$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41001773$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21224418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Steffen</creatorcontrib><creatorcontrib>Exner, Alexander</creatorcontrib><creatorcontrib>Zielske, Kathrin</creatorcontrib><creatorcontrib>Perlich, Jan</creatorcontrib><creatorcontrib>Deloudi, Sofia</creatorcontrib><creatorcontrib>Steurer, Walter</creatorcontrib><creatorcontrib>Lindner, Peter</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><title>Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fee phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques.</description><subject>Aqueous solutions</subject><subject>Atoms &amp; subatomic particles</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Diffusion</subject><subject>Fees</subject><subject>Materials</subject><subject>Micelles</subject><subject>Photonics</subject><subject>Physical Sciences</subject><subject>Polymers</subject><subject>Symmetry</subject><subject>Synchrotrons</subject><subject>Tiling</subject><subject>Wave diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3DAUhUVoaSZp1121mG6ycnOvHra0KYQhj0Kgm3YtJFtONNjWRLIT5t9XZtJJmpUu6DvnPg4hnxG-I9TsfDualCuQlRII8oisEBSWFVfwjqwAaF1KTvkxOUlpAwBKSPhAjilSyjnKFblch74PvjV98TCb5Ju4S5PpU_Hkp_sCadmFvi3M2BYo93Xruy6aZvJhLNJuGNwUdx_J-y6L3Kfn95T8ubr8vb4pb39d_1xf3JYNr_hUWkeN5MY1TtY1OHSqY5Q5ixUX1KLqhGGYmVbaTlkLzNaVYsIpR61RjWCn5MfedzvbwbWNG6doer2NfjBxp4Px-v-f0d_ru_CoGTBGK54Nzp4NYniYXZr04FPj-t6MLsxJy3w4pKKqMvntDbkJcxzzdgskgKp6sTvfQ00MKUXXHUZB0EtAeglIvwSUFV9fb3Dg_yXyCliUL3ZSC40SIQNf9sAmTSEeCJ6bYF0z9heZ2aBn</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Fischer, Steffen</creator><creator>Exner, Alexander</creator><creator>Zielske, Kathrin</creator><creator>Perlich, Jan</creator><creator>Deloudi, Sofia</creator><creator>Steurer, Walter</creator><creator>Lindner, Peter</creator><creator>Förster, Stephan</creator><creator>Clark, Noel A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry</title><author>Fischer, Steffen ; Exner, Alexander ; Zielske, Kathrin ; Perlich, Jan ; Deloudi, Sofia ; Steurer, Walter ; Lindner, Peter ; Förster, Stephan ; Clark, Noel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-be2a84aece8770e1e9f323eb16452b19f5a31e2ad8bf9bb03b76935e9e2ba9c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aqueous solutions</topic><topic>Atoms &amp; subatomic particles</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Diffusion</topic><topic>Fees</topic><topic>Materials</topic><topic>Micelles</topic><topic>Photonics</topic><topic>Physical Sciences</topic><topic>Polymers</topic><topic>Symmetry</topic><topic>Synchrotrons</topic><topic>Tiling</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Steffen</creatorcontrib><creatorcontrib>Exner, Alexander</creatorcontrib><creatorcontrib>Zielske, Kathrin</creatorcontrib><creatorcontrib>Perlich, Jan</creatorcontrib><creatorcontrib>Deloudi, Sofia</creatorcontrib><creatorcontrib>Steurer, Walter</creatorcontrib><creatorcontrib>Lindner, Peter</creatorcontrib><creatorcontrib>Förster, Stephan</creatorcontrib><creatorcontrib>Clark, Noel A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Steffen</au><au>Exner, Alexander</au><au>Zielske, Kathrin</au><au>Perlich, Jan</au><au>Deloudi, Sofia</au><au>Steurer, Walter</au><au>Lindner, Peter</au><au>Förster, Stephan</au><au>Clark, Noel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>108</volume><issue>5</issue><spage>1810</spage><epage>1814</epage><pages>1810-1814</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Micelles are the simplest example of self-assembly found in nature. As many other colloids, they can self-assemble in aqueous solution to form ordered periodic structures. These structures so far all exhibited classical crystallographic symmetries. Here we report that micelles in solution can self-assemble into quasicrystalline phases. We observe phases with 12-fold and 18-fold diffraction symmetry. Colloidal water-based quasicrystals are physically and chemically very simple systems. Macroscopic monodomain samples of centimeter dimension can be easily prepared. Phase transitions between the fee phase and the two quasicrystalline phases can be easily followed in situ by time-resolved diffraction experiments. The discovery of quasicrystalline colloidal solutions advances the theoretical understanding of quasicrystals considerably, as for these systems the stability of quasicrystalline states has been theoretically predicted for the concentration and temperature range, where they are experimentally observed. Also for the use of quasicrystals in advanced materials this discovery is of particular importance, as it opens the route to quasicrystalline photonic band gap materials via established water-based colloidal self-assembly techniques.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21224418</pmid><doi>10.1073/pnas.1008695108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (5), p.1810-1814
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_5_1810
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aqueous solutions
Atoms & subatomic particles
Crystal structure
Crystallography
Diffraction
Diffraction patterns
Diffusion
Fees
Materials
Micelles
Photonics
Physical Sciences
Polymers
Symmetry
Synchrotrons
Tiling
Wave diffraction
title Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20quasicrystals%20with%2012-fold%20and%2018-fold%20diffraction%20symmetry&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fischer,%20Steffen&rft.date=2011-02-01&rft.volume=108&rft.issue=5&rft.spage=1810&rft.epage=1814&rft.pages=1810-1814&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1008695108&rft_dat=%3Cjstor_pnas_%3E41001773%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849502974&rft_id=info:pmid/21224418&rft_jstor_id=41001773&rfr_iscdi=true