hyperactive piggyBac transposase for mammalian applications

DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the do...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-01, Vol.108 (4), p.1531-1536
Hauptverfasser: Yusa, Kosuke, Zhou, Liqin, Li, Meng Amy, Bradley, Allan, Craig, Nancy L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1536
container_issue 4
container_start_page 1531
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Yusa, Kosuke
Zhou, Liqin
Li, Meng Amy
Bradley, Allan
Craig, Nancy L
description DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.
doi_str_mv 10.1073/pnas.1008322108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_4_1531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41001895</jstor_id><sourcerecordid>41001895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-b0f1ffa816edc77b92b46cb9d7ee02c40547c47c51b05e98d30e8d8e75644edf3</originalsourceid><addsrcrecordid>eNpVkN1LwzAUxYMoOj-efVKL73U3H20SBEHFLxj4oD6HNE1nxtrUpBP235sxnQqBGzi_e87lIHSM4QIDp-O-0zH9QFBCMIgtNMIgcV4yCdtoBEB4Lhhhe2g_xhkAyELALtojmEAhZDlCl-_L3gZtBvdps95Np8sbbbIh6C72Pupos8aHrNVtq-dOd5nu-7kzenC-i4dop9HzaI--5wF6u797vX3MJ88PT7fXk9wwIYa8ggY3jRa4tLXhvJKkYqWpZM2tBWIYFIyb9ApcQWGlqClYUQvLi5IxWzf0AF2tfftF1SYP26X75qoPrtVhqbx26r_SuXc19Z-KApGc02Rw_m0Q_MfCxkHN_CJ06WYlmACcusAJGq8hE3yMwTabAAxqVbZala1-y04bp3_v2vA_7f4BVpu_dkIxhQu6yjxZA7M4-LAhWArBQhZJP1vrjfZKT4OL6u2FAKaAJWWslPQLsPeZXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848010581</pqid></control><display><type>article</type><title>hyperactive piggyBac transposase for mammalian applications</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yusa, Kosuke ; Zhou, Liqin ; Li, Meng Amy ; Bradley, Allan ; Craig, Nancy L</creator><creatorcontrib>Yusa, Kosuke ; Zhou, Liqin ; Li, Meng Amy ; Bradley, Allan ; Craig, Nancy L</creatorcontrib><description>DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1008322108</identifier><identifier>PMID: 21205896</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alternative Splicing - genetics ; Animals ; Biological Sciences ; Cell lines ; Cells ; Cells, Cultured ; Comparative Genomic Hybridization ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements - genetics ; Embryo, Mammalian - cytology ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Gene expression ; Genetic mutation ; Genetic transposition ; Genome - genetics ; Genomes ; Genomics ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Mammals ; Mice ; Models, Genetic ; Moths - genetics ; Mutagenesis ; Mutagenesis, Insertional ; Mutation ; Pluripotent stem cells ; Rodents ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Stem cells ; Transposases - genetics ; Transposases - metabolism ; Transposons ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (4), p.1531-1536</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 25, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-b0f1ffa816edc77b92b46cb9d7ee02c40547c47c51b05e98d30e8d8e75644edf3</citedby><cites>FETCH-LOGICAL-c488t-b0f1ffa816edc77b92b46cb9d7ee02c40547c47c51b05e98d30e8d8e75644edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41001895$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41001895$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21205896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yusa, Kosuke</creatorcontrib><creatorcontrib>Zhou, Liqin</creatorcontrib><creatorcontrib>Li, Meng Amy</creatorcontrib><creatorcontrib>Bradley, Allan</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><title>hyperactive piggyBac transposase for mammalian applications</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.</description><subject>Alternative Splicing - genetics</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Comparative Genomic Hybridization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Genetic mutation</subject><subject>Genetic transposition</subject><subject>Genome - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Mammals</subject><subject>Mice</subject><subject>Models, Genetic</subject><subject>Moths - genetics</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Pluripotent stem cells</subject><subject>Rodents</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Stem cells</subject><subject>Transposases - genetics</subject><subject>Transposases - metabolism</subject><subject>Transposons</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN1LwzAUxYMoOj-efVKL73U3H20SBEHFLxj4oD6HNE1nxtrUpBP235sxnQqBGzi_e87lIHSM4QIDp-O-0zH9QFBCMIgtNMIgcV4yCdtoBEB4Lhhhe2g_xhkAyELALtojmEAhZDlCl-_L3gZtBvdps95Np8sbbbIh6C72Pupos8aHrNVtq-dOd5nu-7kzenC-i4dop9HzaI--5wF6u797vX3MJ88PT7fXk9wwIYa8ggY3jRa4tLXhvJKkYqWpZM2tBWIYFIyb9ApcQWGlqClYUQvLi5IxWzf0AF2tfftF1SYP26X75qoPrtVhqbx26r_SuXc19Z-KApGc02Rw_m0Q_MfCxkHN_CJ06WYlmACcusAJGq8hE3yMwTabAAxqVbZala1-y04bp3_v2vA_7f4BVpu_dkIxhQu6yjxZA7M4-LAhWArBQhZJP1vrjfZKT4OL6u2FAKaAJWWslPQLsPeZXQ</recordid><startdate>20110125</startdate><enddate>20110125</enddate><creator>Yusa, Kosuke</creator><creator>Zhou, Liqin</creator><creator>Li, Meng Amy</creator><creator>Bradley, Allan</creator><creator>Craig, Nancy L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20110125</creationdate><title>hyperactive piggyBac transposase for mammalian applications</title><author>Yusa, Kosuke ; Zhou, Liqin ; Li, Meng Amy ; Bradley, Allan ; Craig, Nancy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-b0f1ffa816edc77b92b46cb9d7ee02c40547c47c51b05e98d30e8d8e75644edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative Splicing - genetics</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Comparative Genomic Hybridization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Genetic mutation</topic><topic>Genetic transposition</topic><topic>Genome - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Mammals</topic><topic>Mice</topic><topic>Models, Genetic</topic><topic>Moths - genetics</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Pluripotent stem cells</topic><topic>Rodents</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Stem cells</topic><topic>Transposases - genetics</topic><topic>Transposases - metabolism</topic><topic>Transposons</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yusa, Kosuke</creatorcontrib><creatorcontrib>Zhou, Liqin</creatorcontrib><creatorcontrib>Li, Meng Amy</creatorcontrib><creatorcontrib>Bradley, Allan</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yusa, Kosuke</au><au>Zhou, Liqin</au><au>Li, Meng Amy</au><au>Bradley, Allan</au><au>Craig, Nancy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>hyperactive piggyBac transposase for mammalian applications</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-01-25</date><risdate>2011</risdate><volume>108</volume><issue>4</issue><spage>1531</spage><epage>1536</epage><pages>1531-1536</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>DNA transposons have been widely used for transgenesis and insertional mutagenesis in various organisms. Among the transposons active in mammalian cells, the moth-derived transposon piggyBac is most promising with its highly efficient transposition, large cargo capacity, and precise repair of the donor site. Here we report the generation of a hyperactive piggyBac transposase. The active transposition of piggyBac in multiple organisms allowed us to screen a transposase mutant library in yeast for hyperactive mutants and then to test candidates in mouse ES cells. We isolated 18 hyperactive mutants in yeast, among which five were also hyperactive in mammalian cells. By combining all mutations, a total of 7 aa substitutions, into a single reading frame, we generated a unique hyperactive piggyBac transposase with 17-fold and ninefold increases in excision and integration, respectively. We showed its applicability by demonstrating an increased efficiency of generation of transgene-free mouse induced pluripotent stem cells. We also analyzed whether this hyperactive piggyBac transposase affects the genomic integrity of the host cells. The frequency of footprints left by the hyperactive piggyBac transposase was as low as WT transposase (~1%) and we found no evidence that the expression of the transposase affects genomic integrity. This hyperactive piggyBac transposase expands the utility of the piggyBac transposon for applications in mammalian genetics and gene therapy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21205896</pmid><doi>10.1073/pnas.1008322108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-01, Vol.108 (4), p.1531-1536
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_4_1531
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alternative Splicing - genetics
Animals
Biological Sciences
Cell lines
Cells
Cells, Cultured
Comparative Genomic Hybridization
Deoxyribonucleic acid
DNA
DNA Transposable Elements - genetics
Embryo, Mammalian - cytology
Embryonic Stem Cells - cytology
Embryonic Stem Cells - metabolism
Fibroblasts - cytology
Fibroblasts - metabolism
Gene expression
Genetic mutation
Genetic transposition
Genome - genetics
Genomes
Genomics
HEK293 Cells
Humans
Induced Pluripotent Stem Cells - cytology
Induced Pluripotent Stem Cells - metabolism
Mammals
Mice
Models, Genetic
Moths - genetics
Mutagenesis
Mutagenesis, Insertional
Mutation
Pluripotent stem cells
Rodents
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Stem cells
Transposases - genetics
Transposases - metabolism
Transposons
Yeasts
title hyperactive piggyBac transposase for mammalian applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T02%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=hyperactive%20piggyBac%20transposase%20for%20mammalian%20applications&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yusa,%20Kosuke&rft.date=2011-01-25&rft.volume=108&rft.issue=4&rft.spage=1531&rft.epage=1536&rft.pages=1531-1536&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1008322108&rft_dat=%3Cjstor_pnas_%3E41001895%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848010581&rft_id=info:pmid/21205896&rft_jstor_id=41001895&rfr_iscdi=true