Arginine residues at internal positions in a protein are always charged

Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pKa values can be highly anomalous, some shifted by as many as 5.7 pH units relative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (47), p.18954-18959
Hauptverfasser: Harms, Michael J, Schlessman, Jamie L, Sue, Gloria R, García-Moreno E., Bertrand
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18959
container_issue 47
container_start_page 18954
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Harms, Michael J
Schlessman, Jamie L
Sue, Gloria R
García-Moreno E., Bertrand
description Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pKa values can be highly anomalous, some shifted by as many as 5.7 pH units relative to normal pKa values in water. Here we show that, in contrast, Arg residues at the same internal positions exhibit no detectable shifts in pKa; they are all charged at pH ≤ 10. Twenty-three of these 25 variants with Arg are folded at both pH 7 and 10. The mean decrease in thermodynamic stability from substitution with Arg was 6.2 kcal/mol at this pH, comparable to that for substitution with Lys, Asp, or Glu at pH 7. The physical basis behind the remarkable ability of Arg residues to remain protonated in environments otherwise incompatible with charges is suggested by crystal structures of three variants showing how the guanidinium moiety of the Arg side chain is effectively neutralized through multiple hydrogen bonds to protein polar atoms and to site-bound water molecules. The length of the Arg side chain, and slight deformations of the protein, facilitate placement of the guanidinium moieties near polar groups or bulk water. This unique capacity of Arg side chains to retain their charge in dehydrated environments likely contributes toward the important functional roles of internal Arg residues in situations where a charge is needed in the interior of a protein, in a lipid bilayer, or in similarly hydrophobic environments.
doi_str_mv 10.1073/pnas.1104808108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_47_18954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23058630</jstor_id><sourcerecordid>23058630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-3b16894607a66ad815ce02cdd4839e5be82cab6a440bc8c2e64c232728bfa05d3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhzAmIuMAl7fgz9gWpqqCtVIkD9GxNHO_Wq2wc7GxR_3sc7dKlHHqy5febJ795hLylcEKh4afjgPmEUhAaNAX9jCwoGForYeA5WQCwptaCiSPyKuc1ABip4SU5Ygw0KBALcnGWVmEIg6-Sz6Hb-lzhVIVh8mnAvhpjDlOIQy5PFVZjipOfb8lX2P_G-1y5W0wr370mL5bYZ_9mfx6Tm29ff55f1tffL67Oz65rJ7WZat5SpY1Q0KBS2GkqnQfmuk5obrxsvWYOW4VCQOu0Y14JxzhrmG6XCLLjx-TLznfcthvfOT9MCXs7prDBdG8jBvtYGcKtXcU7yxnjQvBi8GlvkOKvEneym5Cd73scfNxma0Aapco6C_n5SZIqxaXhUsmCfvwPXcftvMDZr4QtEUSBTneQSzHn5JcPv6Zg5zbt3KY9tFkm3v8b9oH_W18Bqj0wTx7stBWNpdrIGXm3Q9Z5iulgwUFqxaHoH3b6EqPFVQrZ3vxgQAUA1UpRxv8AKmK4QA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906072324</pqid></control><display><type>article</type><title>Arginine residues at internal positions in a protein are always charged</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Harms, Michael J ; Schlessman, Jamie L ; Sue, Gloria R ; García-Moreno E., Bertrand</creator><creatorcontrib>Harms, Michael J ; Schlessman, Jamie L ; Sue, Gloria R ; García-Moreno E., Bertrand</creatorcontrib><description>Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pKa values can be highly anomalous, some shifted by as many as 5.7 pH units relative to normal pKa values in water. Here we show that, in contrast, Arg residues at the same internal positions exhibit no detectable shifts in pKa; they are all charged at pH ≤ 10. Twenty-three of these 25 variants with Arg are folded at both pH 7 and 10. The mean decrease in thermodynamic stability from substitution with Arg was 6.2 kcal/mol at this pH, comparable to that for substitution with Lys, Asp, or Glu at pH 7. The physical basis behind the remarkable ability of Arg residues to remain protonated in environments otherwise incompatible with charges is suggested by crystal structures of three variants showing how the guanidinium moiety of the Arg side chain is effectively neutralized through multiple hydrogen bonds to protein polar atoms and to site-bound water molecules. The length of the Arg side chain, and slight deformations of the protein, facilitate placement of the guanidinium moieties near polar groups or bulk water. This unique capacity of Arg side chains to retain their charge in dehydrated environments likely contributes toward the important functional roles of internal Arg residues in situations where a charge is needed in the interior of a protein, in a lipid bilayer, or in similarly hydrophobic environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1104808108</identifier><identifier>PMID: 22080604</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; arginine ; Arginine - chemistry ; Atoms ; Bacterial proteins ; Biochemistry ; Biological Sciences ; Bound water ; Crystal structure ; Fluorescence ; Functional groups ; Guanidine - chemistry ; guanidinium ; Hydrogen Bonding ; Hydrogen bonds ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; hydrophobicity ; Ionization ; micrococcal nuclease ; Micrococcal Nuclease - chemistry ; Models, Molecular ; Molecules ; Plasma stability ; Protein Conformation ; Protein folding ; proteins ; Residues ; Static Electricity ; Thermodynamics ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (47), p.18954-18959</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 22, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-3b16894607a66ad815ce02cdd4839e5be82cab6a440bc8c2e64c232728bfa05d3</citedby><cites>FETCH-LOGICAL-c589t-3b16894607a66ad815ce02cdd4839e5be82cab6a440bc8c2e64c232728bfa05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/47.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23058630$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23058630$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22080604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harms, Michael J</creatorcontrib><creatorcontrib>Schlessman, Jamie L</creatorcontrib><creatorcontrib>Sue, Gloria R</creatorcontrib><creatorcontrib>García-Moreno E., Bertrand</creatorcontrib><title>Arginine residues at internal positions in a protein are always charged</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pKa values can be highly anomalous, some shifted by as many as 5.7 pH units relative to normal pKa values in water. Here we show that, in contrast, Arg residues at the same internal positions exhibit no detectable shifts in pKa; they are all charged at pH ≤ 10. Twenty-three of these 25 variants with Arg are folded at both pH 7 and 10. The mean decrease in thermodynamic stability from substitution with Arg was 6.2 kcal/mol at this pH, comparable to that for substitution with Lys, Asp, or Glu at pH 7. The physical basis behind the remarkable ability of Arg residues to remain protonated in environments otherwise incompatible with charges is suggested by crystal structures of three variants showing how the guanidinium moiety of the Arg side chain is effectively neutralized through multiple hydrogen bonds to protein polar atoms and to site-bound water molecules. The length of the Arg side chain, and slight deformations of the protein, facilitate placement of the guanidinium moieties near polar groups or bulk water. This unique capacity of Arg side chains to retain their charge in dehydrated environments likely contributes toward the important functional roles of internal Arg residues in situations where a charge is needed in the interior of a protein, in a lipid bilayer, or in similarly hydrophobic environments.</description><subject>Active sites</subject><subject>arginine</subject><subject>Arginine - chemistry</subject><subject>Atoms</subject><subject>Bacterial proteins</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Bound water</subject><subject>Crystal structure</subject><subject>Fluorescence</subject><subject>Functional groups</subject><subject>Guanidine - chemistry</subject><subject>guanidinium</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobicity</subject><subject>Ionization</subject><subject>micrococcal nuclease</subject><subject>Micrococcal Nuclease - chemistry</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Plasma stability</subject><subject>Protein Conformation</subject><subject>Protein folding</subject><subject>proteins</subject><subject>Residues</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvhzAmIuMAl7fgz9gWpqqCtVIkD9GxNHO_Wq2wc7GxR_3sc7dKlHHqy5febJ795hLylcEKh4afjgPmEUhAaNAX9jCwoGForYeA5WQCwptaCiSPyKuc1ABip4SU5Ygw0KBALcnGWVmEIg6-Sz6Hb-lzhVIVh8mnAvhpjDlOIQy5PFVZjipOfb8lX2P_G-1y5W0wr370mL5bYZ_9mfx6Tm29ff55f1tffL67Oz65rJ7WZat5SpY1Q0KBS2GkqnQfmuk5obrxsvWYOW4VCQOu0Y14JxzhrmG6XCLLjx-TLznfcthvfOT9MCXs7prDBdG8jBvtYGcKtXcU7yxnjQvBi8GlvkOKvEneym5Cd73scfNxma0Aapco6C_n5SZIqxaXhUsmCfvwPXcftvMDZr4QtEUSBTneQSzHn5JcPv6Zg5zbt3KY9tFkm3v8b9oH_W18Bqj0wTx7stBWNpdrIGXm3Q9Z5iulgwUFqxaHoH3b6EqPFVQrZ3vxgQAUA1UpRxv8AKmK4QA</recordid><startdate>20111122</startdate><enddate>20111122</enddate><creator>Harms, Michael J</creator><creator>Schlessman, Jamie L</creator><creator>Sue, Gloria R</creator><creator>García-Moreno E., Bertrand</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111122</creationdate><title>Arginine residues at internal positions in a protein are always charged</title><author>Harms, Michael J ; Schlessman, Jamie L ; Sue, Gloria R ; García-Moreno E., Bertrand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-3b16894607a66ad815ce02cdd4839e5be82cab6a440bc8c2e64c232728bfa05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active sites</topic><topic>arginine</topic><topic>Arginine - chemistry</topic><topic>Atoms</topic><topic>Bacterial proteins</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Bound water</topic><topic>Crystal structure</topic><topic>Fluorescence</topic><topic>Functional groups</topic><topic>Guanidine - chemistry</topic><topic>guanidinium</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobicity</topic><topic>Ionization</topic><topic>micrococcal nuclease</topic><topic>Micrococcal Nuclease - chemistry</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Plasma stability</topic><topic>Protein Conformation</topic><topic>Protein folding</topic><topic>proteins</topic><topic>Residues</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harms, Michael J</creatorcontrib><creatorcontrib>Schlessman, Jamie L</creatorcontrib><creatorcontrib>Sue, Gloria R</creatorcontrib><creatorcontrib>García-Moreno E., Bertrand</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, Michael J</au><au>Schlessman, Jamie L</au><au>Sue, Gloria R</au><au>García-Moreno E., Bertrand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine residues at internal positions in a protein are always charged</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-22</date><risdate>2011</risdate><volume>108</volume><issue>47</issue><spage>18954</spage><epage>18959</epage><pages>18954-18959</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many functionally essential ionizable groups are buried in the hydrophobic interior of proteins. A systematic study of Lys, Asp, and Glu residues at 25 internal positions in staphylococcal nuclease showed that their pKa values can be highly anomalous, some shifted by as many as 5.7 pH units relative to normal pKa values in water. Here we show that, in contrast, Arg residues at the same internal positions exhibit no detectable shifts in pKa; they are all charged at pH ≤ 10. Twenty-three of these 25 variants with Arg are folded at both pH 7 and 10. The mean decrease in thermodynamic stability from substitution with Arg was 6.2 kcal/mol at this pH, comparable to that for substitution with Lys, Asp, or Glu at pH 7. The physical basis behind the remarkable ability of Arg residues to remain protonated in environments otherwise incompatible with charges is suggested by crystal structures of three variants showing how the guanidinium moiety of the Arg side chain is effectively neutralized through multiple hydrogen bonds to protein polar atoms and to site-bound water molecules. The length of the Arg side chain, and slight deformations of the protein, facilitate placement of the guanidinium moieties near polar groups or bulk water. This unique capacity of Arg side chains to retain their charge in dehydrated environments likely contributes toward the important functional roles of internal Arg residues in situations where a charge is needed in the interior of a protein, in a lipid bilayer, or in similarly hydrophobic environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22080604</pmid><doi>10.1073/pnas.1104808108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (47), p.18954-18959
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_47_18954
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
arginine
Arginine - chemistry
Atoms
Bacterial proteins
Biochemistry
Biological Sciences
Bound water
Crystal structure
Fluorescence
Functional groups
Guanidine - chemistry
guanidinium
Hydrogen Bonding
Hydrogen bonds
Hydrogen-Ion Concentration
Hydrophobic and Hydrophilic Interactions
hydrophobicity
Ionization
micrococcal nuclease
Micrococcal Nuclease - chemistry
Models, Molecular
Molecules
Plasma stability
Protein Conformation
Protein folding
proteins
Residues
Static Electricity
Thermodynamics
Water - chemistry
title Arginine residues at internal positions in a protein are always charged
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine%20residues%20at%20internal%20positions%20in%20a%20protein%20are%20always%20charged&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Harms,%20Michael%20J&rft.date=2011-11-22&rft.volume=108&rft.issue=47&rft.spage=18954&rft.epage=18959&rft.pages=18954-18959&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1104808108&rft_dat=%3Cjstor_pnas_%3E23058630%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906072324&rft_id=info:pmid/22080604&rft_jstor_id=23058630&rfr_iscdi=true