Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport

Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (45), p.18506-18511
Hauptverfasser: Fernández-Marcos, María, Sanz, Luis, Lewis, Daniel R, Muday, Gloria K, Lorenzo, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18511
container_issue 45
container_start_page 18506
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Fernández-Marcos, María
Sanz, Luis
Lewis, Daniel R
Muday, Gloria K
Lorenzo, Oscar
description Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1/nox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1/nox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1/nox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1/nox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.
doi_str_mv 10.1073/pnas.1108644108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_45_18506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352744</jstor_id><sourcerecordid>41352744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-64b96f41872b72425d1c305ce270ff226c1ddb70f7d5ca6e44c52cc8a6d43fbe3</originalsourceid><addsrcrecordid>eNp9kstu1DAUhiMEokNhzQqw2FAWaX2Nkw0SKr1JpUVA15ZjOzMeJXawHVoegnfG0QxTYMHGF53v_OeivyieI3iIICdHo5PxECFYV5Tm80GxQLBBZUUb-LBYQIh5WVNM94onMa4hhA2r4eNiD2OIESXNovh5ZVOwCvg7qw1QcoomguB9AnK0SvZgMMHGZAagTWdUikA6DZbB36YVsG5lW5usd-B2ZXsDgtGTsm4JPl1clafXnz-efAAIHOQfeltqMxqnjcvSKvjRpKwupzvrQArSxdGH9LR41Mk-mmfbe7-4OT35enxeXl6fXRy_vywVq5uUx2ubqqOo5rjlmGKmkSKQKYM57DqMK4W0bvOba6ZkZShVDCtVy0pT0rWG7BfvNrrj1A5Gq9xUkL0Ygx1k-CG8tOLviLMrsfTfBcGIQY6zwJutQPDfJhOTGGxUpu-lM36KooEEUYYRyeTBf0nESEMZ47zK6Ot_0LWfgsuLmPUYyqWbDB1toLzDGIPpdl0jKGZPiNkT4t4TOePln8Pu-N8myADYAnPmvVwtKBOoZnBu7cUGWcfkw46hiDDMKc3xV5t4J72Qy2wZcfMFQ0Sz56oG15z8ApDZ0Qs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903511509</pqid></control><display><type>article</type><title>Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fernández-Marcos, María ; Sanz, Luis ; Lewis, Daniel R ; Muday, Gloria K ; Lorenzo, Oscar</creator><creatorcontrib>Fernández-Marcos, María ; Sanz, Luis ; Lewis, Daniel R ; Muday, Gloria K ; Lorenzo, Oscar</creatorcontrib><description>Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1/nox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1/nox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1/nox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1/nox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1108644108</identifier><identifier>PMID: 22021439</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject><![CDATA[Apical meristems ; Arabidopsis - growth & development ; Arabidopsis Proteins - physiology ; Arabidopsis thaliana ; Auxins ; binding proteins ; Binding sites ; Biological Sciences ; Biological Transport ; Cell differentiation ; cell division ; Chemical treatment ; chlorophyll ; fluorescence ; genetic background ; Genotype & phenotype ; growth retardation ; Indoleacetic Acids - metabolism ; Membrane Transport Proteins - physiology ; Meristem - growth & development ; Meristems ; Mutants ; Mutation ; Nitric oxide ; Nitric Oxide - physiology ; Nitric Oxide Donors - administration & dosage ; nitroprusside ; Nitroprusside - administration & dosage ; Oxides ; phenotype ; Plant cells ; plant development ; Plant growth ; Plant roots ; Plant Roots - growth & development ; Plants ; Proteins ; Real-Time Polymerase Chain Reaction ; Root growth ; Root meristems ; Seedlings]]></subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.18506-18511</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 8, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-64b96f41872b72425d1c305ce270ff226c1ddb70f7d5ca6e44c52cc8a6d43fbe3</citedby><cites>FETCH-LOGICAL-c589t-64b96f41872b72425d1c305ce270ff226c1ddb70f7d5ca6e44c52cc8a6d43fbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352744$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352744$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22021439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernández-Marcos, María</creatorcontrib><creatorcontrib>Sanz, Luis</creatorcontrib><creatorcontrib>Lewis, Daniel R</creatorcontrib><creatorcontrib>Muday, Gloria K</creatorcontrib><creatorcontrib>Lorenzo, Oscar</creatorcontrib><title>Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1/nox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1/nox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1/nox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1/nox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.</description><subject>Apical meristems</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Auxins</subject><subject>binding proteins</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Cell differentiation</subject><subject>cell division</subject><subject>Chemical treatment</subject><subject>chlorophyll</subject><subject>fluorescence</subject><subject>genetic background</subject><subject>Genotype &amp; phenotype</subject><subject>growth retardation</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Membrane Transport Proteins - physiology</subject><subject>Meristem - growth &amp; development</subject><subject>Meristems</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - physiology</subject><subject>Nitric Oxide Donors - administration &amp; dosage</subject><subject>nitroprusside</subject><subject>Nitroprusside - administration &amp; dosage</subject><subject>Oxides</subject><subject>phenotype</subject><subject>Plant cells</subject><subject>plant development</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plants</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Root growth</subject><subject>Root meristems</subject><subject>Seedlings</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kstu1DAUhiMEokNhzQqw2FAWaX2Nkw0SKr1JpUVA15ZjOzMeJXawHVoegnfG0QxTYMHGF53v_OeivyieI3iIICdHo5PxECFYV5Tm80GxQLBBZUUb-LBYQIh5WVNM94onMa4hhA2r4eNiD2OIESXNovh5ZVOwCvg7qw1QcoomguB9AnK0SvZgMMHGZAagTWdUikA6DZbB36YVsG5lW5usd-B2ZXsDgtGTsm4JPl1clafXnz-efAAIHOQfeltqMxqnjcvSKvjRpKwupzvrQArSxdGH9LR41Mk-mmfbe7-4OT35enxeXl6fXRy_vywVq5uUx2ubqqOo5rjlmGKmkSKQKYM57DqMK4W0bvOba6ZkZShVDCtVy0pT0rWG7BfvNrrj1A5Gq9xUkL0Ygx1k-CG8tOLviLMrsfTfBcGIQY6zwJutQPDfJhOTGGxUpu-lM36KooEEUYYRyeTBf0nESEMZ47zK6Ot_0LWfgsuLmPUYyqWbDB1toLzDGIPpdl0jKGZPiNkT4t4TOePln8Pu-N8myADYAnPmvVwtKBOoZnBu7cUGWcfkw46hiDDMKc3xV5t4J72Qy2wZcfMFQ0Sz56oG15z8ApDZ0Qs</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Fernández-Marcos, María</creator><creator>Sanz, Luis</creator><creator>Lewis, Daniel R</creator><creator>Muday, Gloria K</creator><creator>Lorenzo, Oscar</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20111108</creationdate><title>Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport</title><author>Fernández-Marcos, María ; Sanz, Luis ; Lewis, Daniel R ; Muday, Gloria K ; Lorenzo, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-64b96f41872b72425d1c305ce270ff226c1ddb70f7d5ca6e44c52cc8a6d43fbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Apical meristems</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Auxins</topic><topic>binding proteins</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Cell differentiation</topic><topic>cell division</topic><topic>Chemical treatment</topic><topic>chlorophyll</topic><topic>fluorescence</topic><topic>genetic background</topic><topic>Genotype &amp; phenotype</topic><topic>growth retardation</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Membrane Transport Proteins - physiology</topic><topic>Meristem - growth &amp; development</topic><topic>Meristems</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - physiology</topic><topic>Nitric Oxide Donors - administration &amp; dosage</topic><topic>nitroprusside</topic><topic>Nitroprusside - administration &amp; dosage</topic><topic>Oxides</topic><topic>phenotype</topic><topic>Plant cells</topic><topic>plant development</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plants</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Root growth</topic><topic>Root meristems</topic><topic>Seedlings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernández-Marcos, María</creatorcontrib><creatorcontrib>Sanz, Luis</creatorcontrib><creatorcontrib>Lewis, Daniel R</creatorcontrib><creatorcontrib>Muday, Gloria K</creatorcontrib><creatorcontrib>Lorenzo, Oscar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernández-Marcos, María</au><au>Sanz, Luis</au><au>Lewis, Daniel R</au><au>Muday, Gloria K</au><au>Lorenzo, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>108</volume><issue>45</issue><spage>18506</spage><epage>18511</epage><pages>18506-18511</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1/nox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1/nox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1/nox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1/nox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22021439</pmid><doi>10.1073/pnas.1108644108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.18506-18511
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_45_18506
source Jstor Complete Legacy; MEDLINE; PMC (PubMed Central); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Apical meristems
Arabidopsis - growth & development
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Auxins
binding proteins
Binding sites
Biological Sciences
Biological Transport
Cell differentiation
cell division
Chemical treatment
chlorophyll
fluorescence
genetic background
Genotype & phenotype
growth retardation
Indoleacetic Acids - metabolism
Membrane Transport Proteins - physiology
Meristem - growth & development
Meristems
Mutants
Mutation
Nitric oxide
Nitric Oxide - physiology
Nitric Oxide Donors - administration & dosage
nitroprusside
Nitroprusside - administration & dosage
Oxides
phenotype
Plant cells
plant development
Plant growth
Plant roots
Plant Roots - growth & development
Plants
Proteins
Real-Time Polymerase Chain Reaction
Root growth
Root meristems
Seedlings
title Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20causes%20root%20apical%20meristem%20defects%20and%20growth%20inhibition%20while%20reducing%20PIN-FORMED%201%20(PIN1)-dependent%20acropetal%20auxin%20transport&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fern%C3%A1ndez-Marcos,%20Mar%C3%ADa&rft.date=2011-11-08&rft.volume=108&rft.issue=45&rft.spage=18506&rft.epage=18511&rft.pages=18506-18511&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1108644108&rft_dat=%3Cjstor_pnas_%3E41352744%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903511509&rft_id=info:pmid/22021439&rft_jstor_id=41352744&rfr_iscdi=true