Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria

The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (37), p.15163-15168
Hauptverfasser: Anderson, Donald D, Quintero, Cynthia M, Stover, Patrick J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15168
container_issue 37
container_start_page 15163
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Anderson, Donald D
Quintero, Cynthia M
Stover, Patrick J
description The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.
doi_str_mv 10.1073/pnas.1103623108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_37_15163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352063</jstor_id><sourcerecordid>41352063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEotPCmhVgdcMqrd-xN5VQxaNSJRZQttZN4jQeJfZge4rm3-MwwxRY2fL57tE9Oq6qVwRfENywy42HdEEIZpIygtWTakWwJrXkGj-tVhjTplac8pPqNKU1xlgLhZ9XJ5SoRhKlVtX3m9767AbXQXbBozAgQL1FPjwElMfd7PrdBNmi1oW083m0ySW0gTz-hB1yHs0wzzA5KDeXQzcG30cHL6pnA0zJvjycZ9Xdxw_frj_Xt18-3Vy_v607IWSuwXIrB7AYM6CKWMJ72RDV46EXsiUSJKeqpV2nShKhJbHlRWvRSq60lC07q672vpttO9u-K1kiTGYT3QxxZwI486_i3Wjuw4NhpOFS0GLw7mAQw4-tTdnMLnV2msDbsE1G6bIbbeRCnv9HrsM2-pJugQSTWPMCXe6hLoaUoh2OqxBslsbM0ph5bKxMvPk7wZH_U1EB0AFYJh_tlGGNIYJIVpDXe2SdcohHhhMmKP6tv93rAwQD99Elc_eVYsLLj1BYM81-AevgsDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890536094</pqid></control><display><type>article</type><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</creator><creatorcontrib>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</creatorcontrib><description>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103623108</identifier><identifier>PMID: 21876188</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; animal ovaries ; Animals ; Biological Sciences ; Biosynthesis ; Biosynthetic Pathways ; Cell lines ; Cells ; Chinese hamsters ; CHO Cells ; Cricetinae ; Cricetulus ; dihydrofolate reductase ; DNA ; DNA damage ; DNA, Mitochondrial - metabolism ; Gene Expression Regulation ; Glycine - metabolism ; glycine hydroxymethyltransferase ; HeLa cells ; Hep G2 cells ; Humans ; Mammals ; Mammals - metabolism ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondrial DNA ; Molecular Sequence Data ; Mutation ; NADP (coenzyme) ; nuclear genome ; Protein Transport ; Proteins ; pseudogenes ; Sequence Alignment ; Small interfering RNA ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - metabolism ; Thymidine Monophosphate - biosynthesis ; thymidylate synthase ; Thymidylate Synthase - metabolism ; Thymine Nucleotides - biosynthesis ; uracil ; Uracil - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15163-15168</ispartof><rights>Copyright National Academy of Sciences Sep 13, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</citedby><cites>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21876188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Donald D</creatorcontrib><creatorcontrib>Quintero, Cynthia M</creatorcontrib><creatorcontrib>Stover, Patrick J</creatorcontrib><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</description><subject>Amino Acid Sequence</subject><subject>animal ovaries</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Chinese hamsters</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>dihydrofolate reductase</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glycine - metabolism</subject><subject>glycine hydroxymethyltransferase</subject><subject>HeLa cells</subject><subject>Hep G2 cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>NADP (coenzyme)</subject><subject>nuclear genome</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>pseudogenes</subject><subject>Sequence Alignment</subject><subject>Small interfering RNA</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Thymidine Monophosphate - biosynthesis</subject><subject>thymidylate synthase</subject><subject>Thymidylate Synthase - metabolism</subject><subject>Thymine Nucleotides - biosynthesis</subject><subject>uracil</subject><subject>Uracil - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhSMEotPCmhVgdcMqrd-xN5VQxaNSJRZQttZN4jQeJfZge4rm3-MwwxRY2fL57tE9Oq6qVwRfENywy42HdEEIZpIygtWTakWwJrXkGj-tVhjTplac8pPqNKU1xlgLhZ9XJ5SoRhKlVtX3m9767AbXQXbBozAgQL1FPjwElMfd7PrdBNmi1oW083m0ySW0gTz-hB1yHs0wzzA5KDeXQzcG30cHL6pnA0zJvjycZ9Xdxw_frj_Xt18-3Vy_v607IWSuwXIrB7AYM6CKWMJ72RDV46EXsiUSJKeqpV2nShKhJbHlRWvRSq60lC07q672vpttO9u-K1kiTGYT3QxxZwI486_i3Wjuw4NhpOFS0GLw7mAQw4-tTdnMLnV2msDbsE1G6bIbbeRCnv9HrsM2-pJugQSTWPMCXe6hLoaUoh2OqxBslsbM0ph5bKxMvPk7wZH_U1EB0AFYJh_tlGGNIYJIVpDXe2SdcohHhhMmKP6tv93rAwQD99Elc_eVYsLLj1BYM81-AevgsDM</recordid><startdate>20110913</startdate><enddate>20110913</enddate><creator>Anderson, Donald D</creator><creator>Quintero, Cynthia M</creator><creator>Stover, Patrick J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110913</creationdate><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><author>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>animal ovaries</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Chinese hamsters</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>dihydrofolate reductase</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glycine - metabolism</topic><topic>glycine hydroxymethyltransferase</topic><topic>HeLa cells</topic><topic>Hep G2 cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>NADP (coenzyme)</topic><topic>nuclear genome</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>pseudogenes</topic><topic>Sequence Alignment</topic><topic>Small interfering RNA</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Thymidine Monophosphate - biosynthesis</topic><topic>thymidylate synthase</topic><topic>Thymidylate Synthase - metabolism</topic><topic>Thymine Nucleotides - biosynthesis</topic><topic>uracil</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Donald D</creatorcontrib><creatorcontrib>Quintero, Cynthia M</creatorcontrib><creatorcontrib>Stover, Patrick J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Donald D</au><au>Quintero, Cynthia M</au><au>Stover, Patrick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-13</date><risdate>2011</risdate><volume>108</volume><issue>37</issue><spage>15163</spage><epage>15168</epage><pages>15163-15168</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21876188</pmid><doi>10.1073/pnas.1103623108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15163-15168
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_37_15163
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
animal ovaries
Animals
Biological Sciences
Biosynthesis
Biosynthetic Pathways
Cell lines
Cells
Chinese hamsters
CHO Cells
Cricetinae
Cricetulus
dihydrofolate reductase
DNA
DNA damage
DNA, Mitochondrial - metabolism
Gene Expression Regulation
Glycine - metabolism
glycine hydroxymethyltransferase
HeLa cells
Hep G2 cells
Humans
Mammals
Mammals - metabolism
Mitochondria
Mitochondria - enzymology
Mitochondria - metabolism
Mitochondrial DNA
Molecular Sequence Data
Mutation
NADP (coenzyme)
nuclear genome
Protein Transport
Proteins
pseudogenes
Sequence Alignment
Small interfering RNA
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - genetics
Tetrahydrofolate Dehydrogenase - metabolism
Thymidine Monophosphate - biosynthesis
thymidylate synthase
Thymidylate Synthase - metabolism
Thymine Nucleotides - biosynthesis
uracil
Uracil - metabolism
title Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20de%20novo%20thymidylate%20biosynthesis%20pathway%20in%20mammalian%20mitochondria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Anderson,%20Donald%20D&rft.date=2011-09-13&rft.volume=108&rft.issue=37&rft.spage=15163&rft.epage=15168&rft.pages=15163-15168&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103623108&rft_dat=%3Cjstor_pnas_%3E41352063%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890536094&rft_id=info:pmid/21876188&rft_jstor_id=41352063&rfr_iscdi=true