Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria
The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporat...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-09, Vol.108 (37), p.15163-15168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15168 |
---|---|
container_issue | 37 |
container_start_page | 15163 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Anderson, Donald D Quintero, Cynthia M Stover, Patrick J |
description | The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity. |
doi_str_mv | 10.1073/pnas.1103623108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_37_15163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41352063</jstor_id><sourcerecordid>41352063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</originalsourceid><addsrcrecordid>eNpdkktv1DAUhSMEotPCmhVgdcMqrd-xN5VQxaNSJRZQttZN4jQeJfZge4rm3-MwwxRY2fL57tE9Oq6qVwRfENywy42HdEEIZpIygtWTakWwJrXkGj-tVhjTplac8pPqNKU1xlgLhZ9XJ5SoRhKlVtX3m9767AbXQXbBozAgQL1FPjwElMfd7PrdBNmi1oW083m0ySW0gTz-hB1yHs0wzzA5KDeXQzcG30cHL6pnA0zJvjycZ9Xdxw_frj_Xt18-3Vy_v607IWSuwXIrB7AYM6CKWMJ72RDV46EXsiUSJKeqpV2nShKhJbHlRWvRSq60lC07q672vpttO9u-K1kiTGYT3QxxZwI486_i3Wjuw4NhpOFS0GLw7mAQw4-tTdnMLnV2msDbsE1G6bIbbeRCnv9HrsM2-pJugQSTWPMCXe6hLoaUoh2OqxBslsbM0ph5bKxMvPk7wZH_U1EB0AFYJh_tlGGNIYJIVpDXe2SdcohHhhMmKP6tv93rAwQD99Elc_eVYsLLj1BYM81-AevgsDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>890536094</pqid></control><display><type>article</type><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</creator><creatorcontrib>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</creatorcontrib><description>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1103623108</identifier><identifier>PMID: 21876188</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; animal ovaries ; Animals ; Biological Sciences ; Biosynthesis ; Biosynthetic Pathways ; Cell lines ; Cells ; Chinese hamsters ; CHO Cells ; Cricetinae ; Cricetulus ; dihydrofolate reductase ; DNA ; DNA damage ; DNA, Mitochondrial - metabolism ; Gene Expression Regulation ; Glycine - metabolism ; glycine hydroxymethyltransferase ; HeLa cells ; Hep G2 cells ; Humans ; Mammals ; Mammals - metabolism ; Mitochondria ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mitochondrial DNA ; Molecular Sequence Data ; Mutation ; NADP (coenzyme) ; nuclear genome ; Protein Transport ; Proteins ; pseudogenes ; Sequence Alignment ; Small interfering RNA ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - genetics ; Tetrahydrofolate Dehydrogenase - metabolism ; Thymidine Monophosphate - biosynthesis ; thymidylate synthase ; Thymidylate Synthase - metabolism ; Thymine Nucleotides - biosynthesis ; uracil ; Uracil - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15163-15168</ispartof><rights>Copyright National Academy of Sciences Sep 13, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</citedby><cites>FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41352063$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41352063$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27931,27932,53798,53800,58024,58257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21876188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, Donald D</creatorcontrib><creatorcontrib>Quintero, Cynthia M</creatorcontrib><creatorcontrib>Stover, Patrick J</creatorcontrib><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</description><subject>Amino Acid Sequence</subject><subject>animal ovaries</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Chinese hamsters</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>dihydrofolate reductase</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Gene Expression Regulation</subject><subject>Glycine - metabolism</subject><subject>glycine hydroxymethyltransferase</subject><subject>HeLa cells</subject><subject>Hep G2 cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>NADP (coenzyme)</subject><subject>nuclear genome</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>pseudogenes</subject><subject>Sequence Alignment</subject><subject>Small interfering RNA</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Thymidine Monophosphate - biosynthesis</subject><subject>thymidylate synthase</subject><subject>Thymidylate Synthase - metabolism</subject><subject>Thymine Nucleotides - biosynthesis</subject><subject>uracil</subject><subject>Uracil - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkktv1DAUhSMEotPCmhVgdcMqrd-xN5VQxaNSJRZQttZN4jQeJfZge4rm3-MwwxRY2fL57tE9Oq6qVwRfENywy42HdEEIZpIygtWTakWwJrXkGj-tVhjTplac8pPqNKU1xlgLhZ9XJ5SoRhKlVtX3m9767AbXQXbBozAgQL1FPjwElMfd7PrdBNmi1oW083m0ySW0gTz-hB1yHs0wzzA5KDeXQzcG30cHL6pnA0zJvjycZ9Xdxw_frj_Xt18-3Vy_v607IWSuwXIrB7AYM6CKWMJ72RDV46EXsiUSJKeqpV2nShKhJbHlRWvRSq60lC07q672vpttO9u-K1kiTGYT3QxxZwI486_i3Wjuw4NhpOFS0GLw7mAQw4-tTdnMLnV2msDbsE1G6bIbbeRCnv9HrsM2-pJugQSTWPMCXe6hLoaUoh2OqxBslsbM0ph5bKxMvPk7wZH_U1EB0AFYJh_tlGGNIYJIVpDXe2SdcohHhhMmKP6tv93rAwQD99Elc_eVYsLLj1BYM81-AevgsDM</recordid><startdate>20110913</startdate><enddate>20110913</enddate><creator>Anderson, Donald D</creator><creator>Quintero, Cynthia M</creator><creator>Stover, Patrick J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110913</creationdate><title>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</title><author>Anderson, Donald D ; Quintero, Cynthia M ; Stover, Patrick J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-ae4e6fae003a281e14d6718d0fd56b16a6428b2cc80275961ea64995b648966b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>animal ovaries</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Chinese hamsters</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>dihydrofolate reductase</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Gene Expression Regulation</topic><topic>Glycine - metabolism</topic><topic>glycine hydroxymethyltransferase</topic><topic>HeLa cells</topic><topic>Hep G2 cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>NADP (coenzyme)</topic><topic>nuclear genome</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>pseudogenes</topic><topic>Sequence Alignment</topic><topic>Small interfering RNA</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Thymidine Monophosphate - biosynthesis</topic><topic>thymidylate synthase</topic><topic>Thymidylate Synthase - metabolism</topic><topic>Thymine Nucleotides - biosynthesis</topic><topic>uracil</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Donald D</creatorcontrib><creatorcontrib>Quintero, Cynthia M</creatorcontrib><creatorcontrib>Stover, Patrick J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Donald D</au><au>Quintero, Cynthia M</au><au>Stover, Patrick J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-09-13</date><risdate>2011</risdate><volume>108</volume><issue>37</issue><spage>15163</spage><epage>15168</epage><pages>15163-15168</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The de novo and salvage dTTP pathways are essential for maintaining cellular dTTP pools to ensure the faithful replication of both mitochondrial and nuclear DNA. Disregulation of dTTP pools results in mitochondrial dysfunction and nuclear genome instability due to an increase in uracil misincorporation. In this study, we identified a de novo dTMP synthesis pathway in mammalian mitochondria. Mitochondria purified from wild-type Chinese hamster ovary (CHO) cells and HepG2 cells converted dUMP to dTMP in the presence of NADPH and serine, through the activities of mitochondrial serine hydroxymethyltransferase (SHMT2), thymidylate synthase (TYMS), and a novel human mitochondrial dihydrofolate reductase (DHFR) previously thought to be a pseudogene known as dihydrofolate reductase-like protein 1 (DHFRL1). Human DHFRL1, SHMT2, and TYMS were localized to mitochondrial matrix and inner membrane, confirming the presence of this pathway in mitochondria. Knockdown of DHFRL1 using siRNA eliminated DHFR activity in mitochondria. DHFRL1 expression in CHO glyC, a previously uncharacterized mutant glycine auxotrophic cell line, rescued the glycine auxotrophy. De novo thymidylate synthesis activity was diminished in mitochondria isolated from glyA CHO cells that lack SHMT2 activity, as well as mitochondria isolated from wild-type CHO cells treated with methotrexate, a DHFR inhibitor. De novo thymidylate synthesis in mitochondria prevents uracil accumulation in mitochondrial DNA (mtDNA), as uracil levels in mtDNA isolated from glyA CHO cells was 40% higher than observed in mtDNA isolated from wild-type CHO cells. These data indicate that unlike other nucleotides, de novo dTMP synthesis occurs within mitochondria and is essential for mtDNA integrity.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21876188</pmid><doi>10.1073/pnas.1103623108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15163-15168 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_108_37_15163 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence animal ovaries Animals Biological Sciences Biosynthesis Biosynthetic Pathways Cell lines Cells Chinese hamsters CHO Cells Cricetinae Cricetulus dihydrofolate reductase DNA DNA damage DNA, Mitochondrial - metabolism Gene Expression Regulation Glycine - metabolism glycine hydroxymethyltransferase HeLa cells Hep G2 cells Humans Mammals Mammals - metabolism Mitochondria Mitochondria - enzymology Mitochondria - metabolism Mitochondrial DNA Molecular Sequence Data Mutation NADP (coenzyme) nuclear genome Protein Transport Proteins pseudogenes Sequence Alignment Small interfering RNA Tetrahydrofolate Dehydrogenase - chemistry Tetrahydrofolate Dehydrogenase - genetics Tetrahydrofolate Dehydrogenase - metabolism Thymidine Monophosphate - biosynthesis thymidylate synthase Thymidylate Synthase - metabolism Thymine Nucleotides - biosynthesis uracil Uracil - metabolism |
title | Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T01%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20de%20novo%20thymidylate%20biosynthesis%20pathway%20in%20mammalian%20mitochondria&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Anderson,%20Donald%20D&rft.date=2011-09-13&rft.volume=108&rft.issue=37&rft.spage=15163&rft.epage=15168&rft.pages=15163-15168&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1103623108&rft_dat=%3Cjstor_pnas_%3E41352063%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=890536094&rft_id=info:pmid/21876188&rft_jstor_id=41352063&rfr_iscdi=true |