Endocannabinoid signal in the gut controls dietary fat intake
Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (31), p.12904-12908 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12908 |
---|---|
container_issue | 31 |
container_start_page | 12904 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | DiPatrizio, Nicholas V Astarita, Giuseppe Schwartz, Gary Li, Xiaosong Piomelli, Daniele |
description | Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CBâ-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CBâ-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs. |
doi_str_mv | 10.1073/pnas.1104675108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_31_12904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979109</jstor_id><sourcerecordid>27979109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERUPgzAlYceG07fjbPhQJVYVWqsQBera8u97UYWMH24vEf49DQgM9WZr3m-eZeQi9wnCGQdLzbbD5DGNgQnIM6glaYNC4FUzDU7QAILJVjLBT9DznNQBoruAZOiVYUsACL9DFVRhib0OwnQ_RD032q2Cnxoem3LtmNZemj6GkOOVm8K7Y9KsZbal6sd_dC3Qy2im7l4d3ie4-XX27vG5vv3y-ufx42_aci9JyNVBhHbaa6FERqV3vun5kTkiQgigy0oFax4aO1DInmI5c6k4yzbpOYEeX6MPedzt3Gzf0rk5kJ7NNflMHMtF6878S_L1ZxZ-GYg5Kimrw_mCQ4o_Z5WI2Pvdummxwcc5GqXo9LThU8t0jch3nVE_yByJasXr3JTrfQ32KOSc3PoyCweyCMbtgzDGY2vHm3w0e-L9JVKA5ALvOo52qO5j6L7CKvN4j61xiOlpILXWNvepv9_poo7Gr5LO5-0qqOwDWWDNGfwP_taca</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881298407</pqid></control><display><type>article</type><title>Endocannabinoid signal in the gut controls dietary fat intake</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</creator><creatorcontrib>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</creatorcontrib><description>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CBâ-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CBâ-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1104675108</identifier><identifier>PMID: 21730161</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amidohydrolases - metabolism ; Animals ; antagonists ; Benzyl Compounds - pharmacology ; Biological Sciences ; Body fat ; brain ; Brain - drug effects ; Brain - metabolism ; Cannabinoid Receptor Modulators - metabolism ; Cannulae ; Corn oil ; Diet ; Dietary Fats - administration & dosage ; Dietary Fats - metabolism ; drugs ; duodenum ; Eating - drug effects ; Eating - physiology ; Endocannabinoids ; energy balance ; enzyme activity ; Fat intake ; food intake ; foods ; Gastrointestinal Tract - drug effects ; Gastrointestinal Tract - metabolism ; Intestine, Small - drug effects ; Intestine, Small - metabolism ; Lipids ; Lipids - analysis ; Liquids ; Male ; metabolism ; Phospholipase D - metabolism ; Piperidines - pharmacology ; Pyrazoles - pharmacology ; Pyrroles - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 - antagonists & inhibitors ; Receptor, Cannabinoid, CB1 - metabolism ; Receptors ; Rimonabant ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Stomach ; T cell receptors ; Vagotomy ; vagus nerve</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (31), p.12904-12908</ispartof><rights>copyright © 1993–2008 by the National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 2, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</citedby><cites>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21730161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DiPatrizio, Nicholas V</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Schwartz, Gary</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><creatorcontrib>Piomelli, Daniele</creatorcontrib><title>Endocannabinoid signal in the gut controls dietary fat intake</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CBâ-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CBâ-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</description><subject>Amidohydrolases - metabolism</subject><subject>Animals</subject><subject>antagonists</subject><subject>Benzyl Compounds - pharmacology</subject><subject>Biological Sciences</subject><subject>Body fat</subject><subject>brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Cannabinoid Receptor Modulators - metabolism</subject><subject>Cannulae</subject><subject>Corn oil</subject><subject>Diet</subject><subject>Dietary Fats - administration & dosage</subject><subject>Dietary Fats - metabolism</subject><subject>drugs</subject><subject>duodenum</subject><subject>Eating - drug effects</subject><subject>Eating - physiology</subject><subject>Endocannabinoids</subject><subject>energy balance</subject><subject>enzyme activity</subject><subject>Fat intake</subject><subject>food intake</subject><subject>foods</subject><subject>Gastrointestinal Tract - drug effects</subject><subject>Gastrointestinal Tract - metabolism</subject><subject>Intestine, Small - drug effects</subject><subject>Intestine, Small - metabolism</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Liquids</subject><subject>Male</subject><subject>metabolism</subject><subject>Phospholipase D - metabolism</subject><subject>Piperidines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrroles - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Cannabinoid, CB1 - antagonists & inhibitors</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Receptors</subject><subject>Rimonabant</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Stomach</subject><subject>T cell receptors</subject><subject>Vagotomy</subject><subject>vagus nerve</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERUPgzAlYceG07fjbPhQJVYVWqsQBera8u97UYWMH24vEf49DQgM9WZr3m-eZeQi9wnCGQdLzbbD5DGNgQnIM6glaYNC4FUzDU7QAILJVjLBT9DznNQBoruAZOiVYUsACL9DFVRhib0OwnQ_RD032q2Cnxoem3LtmNZemj6GkOOVm8K7Y9KsZbal6sd_dC3Qy2im7l4d3ie4-XX27vG5vv3y-ufx42_aci9JyNVBhHbaa6FERqV3vun5kTkiQgigy0oFax4aO1DInmI5c6k4yzbpOYEeX6MPedzt3Gzf0rk5kJ7NNflMHMtF6878S_L1ZxZ-GYg5Kimrw_mCQ4o_Z5WI2Pvdummxwcc5GqXo9LThU8t0jch3nVE_yByJasXr3JTrfQ32KOSc3PoyCweyCMbtgzDGY2vHm3w0e-L9JVKA5ALvOo52qO5j6L7CKvN4j61xiOlpILXWNvepv9_poo7Gr5LO5-0qqOwDWWDNGfwP_taca</recordid><startdate>20110802</startdate><enddate>20110802</enddate><creator>DiPatrizio, Nicholas V</creator><creator>Astarita, Giuseppe</creator><creator>Schwartz, Gary</creator><creator>Li, Xiaosong</creator><creator>Piomelli, Daniele</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110802</creationdate><title>Endocannabinoid signal in the gut controls dietary fat intake</title><author>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amidohydrolases - metabolism</topic><topic>Animals</topic><topic>antagonists</topic><topic>Benzyl Compounds - pharmacology</topic><topic>Biological Sciences</topic><topic>Body fat</topic><topic>brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Cannabinoid Receptor Modulators - metabolism</topic><topic>Cannulae</topic><topic>Corn oil</topic><topic>Diet</topic><topic>Dietary Fats - administration & dosage</topic><topic>Dietary Fats - metabolism</topic><topic>drugs</topic><topic>duodenum</topic><topic>Eating - drug effects</topic><topic>Eating - physiology</topic><topic>Endocannabinoids</topic><topic>energy balance</topic><topic>enzyme activity</topic><topic>Fat intake</topic><topic>food intake</topic><topic>foods</topic><topic>Gastrointestinal Tract - drug effects</topic><topic>Gastrointestinal Tract - metabolism</topic><topic>Intestine, Small - drug effects</topic><topic>Intestine, Small - metabolism</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Liquids</topic><topic>Male</topic><topic>metabolism</topic><topic>Phospholipase D - metabolism</topic><topic>Piperidines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrroles - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Cannabinoid, CB1 - antagonists & inhibitors</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Receptors</topic><topic>Rimonabant</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Stomach</topic><topic>T cell receptors</topic><topic>Vagotomy</topic><topic>vagus nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiPatrizio, Nicholas V</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Schwartz, Gary</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><creatorcontrib>Piomelli, Daniele</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiPatrizio, Nicholas V</au><au>Astarita, Giuseppe</au><au>Schwartz, Gary</au><au>Li, Xiaosong</au><au>Piomelli, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocannabinoid signal in the gut controls dietary fat intake</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-02</date><risdate>2011</risdate><volume>108</volume><issue>31</issue><spage>12904</spage><epage>12908</epage><pages>12904-12908</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CBâ-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CBâ-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21730161</pmid><doi>10.1073/pnas.1104675108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (31), p.12904-12908 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_108_31_12904 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amidohydrolases - metabolism Animals antagonists Benzyl Compounds - pharmacology Biological Sciences Body fat brain Brain - drug effects Brain - metabolism Cannabinoid Receptor Modulators - metabolism Cannulae Corn oil Diet Dietary Fats - administration & dosage Dietary Fats - metabolism drugs duodenum Eating - drug effects Eating - physiology Endocannabinoids energy balance enzyme activity Fat intake food intake foods Gastrointestinal Tract - drug effects Gastrointestinal Tract - metabolism Intestine, Small - drug effects Intestine, Small - metabolism Lipids Lipids - analysis Liquids Male metabolism Phospholipase D - metabolism Piperidines - pharmacology Pyrazoles - pharmacology Pyrroles - pharmacology Rats Rats, Sprague-Dawley Receptor, Cannabinoid, CB1 - antagonists & inhibitors Receptor, Cannabinoid, CB1 - metabolism Receptors Rimonabant Signal transduction Signal Transduction - drug effects Signal Transduction - physiology Stomach T cell receptors Vagotomy vagus nerve |
title | Endocannabinoid signal in the gut controls dietary fat intake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocannabinoid%20signal%20in%20the%20gut%20controls%20dietary%20fat%20intake&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=DiPatrizio,%20Nicholas%20V&rft.date=2011-08-02&rft.volume=108&rft.issue=31&rft.spage=12904&rft.epage=12908&rft.pages=12904-12908&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1104675108&rft_dat=%3Cjstor_pnas_%3E27979109%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881298407&rft_id=info:pmid/21730161&rft_jstor_id=27979109&rfr_iscdi=true |