Endocannabinoid signal in the gut controls dietary fat intake

Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-08, Vol.108 (31), p.12904-12908
Hauptverfasser: DiPatrizio, Nicholas V, Astarita, Giuseppe, Schwartz, Gary, Li, Xiaosong, Piomelli, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12908
container_issue 31
container_start_page 12904
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator DiPatrizio, Nicholas V
Astarita, Giuseppe
Schwartz, Gary
Li, Xiaosong
Piomelli, Daniele
description Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB₁-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB₁-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.
doi_str_mv 10.1073/pnas.1104675108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_31_12904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27979109</jstor_id><sourcerecordid>27979109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERUPgzAlYceG07fjbPhQJVYVWqsQBera8u97UYWMH24vEf49DQgM9WZr3m-eZeQi9wnCGQdLzbbD5DGNgQnIM6glaYNC4FUzDU7QAILJVjLBT9DznNQBoruAZOiVYUsACL9DFVRhib0OwnQ_RD032q2Cnxoem3LtmNZemj6GkOOVm8K7Y9KsZbal6sd_dC3Qy2im7l4d3ie4-XX27vG5vv3y-ufx42_aci9JyNVBhHbaa6FERqV3vun5kTkiQgigy0oFax4aO1DInmI5c6k4yzbpOYEeX6MPedzt3Gzf0rk5kJ7NNflMHMtF6878S_L1ZxZ-GYg5Kimrw_mCQ4o_Z5WI2Pvdummxwcc5GqXo9LThU8t0jch3nVE_yByJasXr3JTrfQ32KOSc3PoyCweyCMbtgzDGY2vHm3w0e-L9JVKA5ALvOo52qO5j6L7CKvN4j61xiOlpILXWNvepv9_poo7Gr5LO5-0qqOwDWWDNGfwP_taca</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881298407</pqid></control><display><type>article</type><title>Endocannabinoid signal in the gut controls dietary fat intake</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</creator><creatorcontrib>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</creatorcontrib><description>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB₁-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB₁-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1104675108</identifier><identifier>PMID: 21730161</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amidohydrolases - metabolism ; Animals ; antagonists ; Benzyl Compounds - pharmacology ; Biological Sciences ; Body fat ; brain ; Brain - drug effects ; Brain - metabolism ; Cannabinoid Receptor Modulators - metabolism ; Cannulae ; Corn oil ; Diet ; Dietary Fats - administration &amp; dosage ; Dietary Fats - metabolism ; drugs ; duodenum ; Eating - drug effects ; Eating - physiology ; Endocannabinoids ; energy balance ; enzyme activity ; Fat intake ; food intake ; foods ; Gastrointestinal Tract - drug effects ; Gastrointestinal Tract - metabolism ; Intestine, Small - drug effects ; Intestine, Small - metabolism ; Lipids ; Lipids - analysis ; Liquids ; Male ; metabolism ; Phospholipase D - metabolism ; Piperidines - pharmacology ; Pyrazoles - pharmacology ; Pyrroles - pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors ; Receptor, Cannabinoid, CB1 - metabolism ; Receptors ; Rimonabant ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Stomach ; T cell receptors ; Vagotomy ; vagus nerve</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (31), p.12904-12908</ispartof><rights>copyright © 1993–2008 by the National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 2, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</citedby><cites>FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27979109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27979109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21730161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DiPatrizio, Nicholas V</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Schwartz, Gary</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><creatorcontrib>Piomelli, Daniele</creatorcontrib><title>Endocannabinoid signal in the gut controls dietary fat intake</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB₁-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB₁-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</description><subject>Amidohydrolases - metabolism</subject><subject>Animals</subject><subject>antagonists</subject><subject>Benzyl Compounds - pharmacology</subject><subject>Biological Sciences</subject><subject>Body fat</subject><subject>brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Cannabinoid Receptor Modulators - metabolism</subject><subject>Cannulae</subject><subject>Corn oil</subject><subject>Diet</subject><subject>Dietary Fats - administration &amp; dosage</subject><subject>Dietary Fats - metabolism</subject><subject>drugs</subject><subject>duodenum</subject><subject>Eating - drug effects</subject><subject>Eating - physiology</subject><subject>Endocannabinoids</subject><subject>energy balance</subject><subject>enzyme activity</subject><subject>Fat intake</subject><subject>food intake</subject><subject>foods</subject><subject>Gastrointestinal Tract - drug effects</subject><subject>Gastrointestinal Tract - metabolism</subject><subject>Intestine, Small - drug effects</subject><subject>Intestine, Small - metabolism</subject><subject>Lipids</subject><subject>Lipids - analysis</subject><subject>Liquids</subject><subject>Male</subject><subject>metabolism</subject><subject>Phospholipase D - metabolism</subject><subject>Piperidines - pharmacology</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrroles - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Receptors</subject><subject>Rimonabant</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Stomach</subject><subject>T cell receptors</subject><subject>Vagotomy</subject><subject>vagus nerve</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERUPgzAlYceG07fjbPhQJVYVWqsQBera8u97UYWMH24vEf49DQgM9WZr3m-eZeQi9wnCGQdLzbbD5DGNgQnIM6glaYNC4FUzDU7QAILJVjLBT9DznNQBoruAZOiVYUsACL9DFVRhib0OwnQ_RD032q2Cnxoem3LtmNZemj6GkOOVm8K7Y9KsZbal6sd_dC3Qy2im7l4d3ie4-XX27vG5vv3y-ufx42_aci9JyNVBhHbaa6FERqV3vun5kTkiQgigy0oFax4aO1DInmI5c6k4yzbpOYEeX6MPedzt3Gzf0rk5kJ7NNflMHMtF6878S_L1ZxZ-GYg5Kimrw_mCQ4o_Z5WI2Pvdummxwcc5GqXo9LThU8t0jch3nVE_yByJasXr3JTrfQ32KOSc3PoyCweyCMbtgzDGY2vHm3w0e-L9JVKA5ALvOo52qO5j6L7CKvN4j61xiOlpILXWNvepv9_poo7Gr5LO5-0qqOwDWWDNGfwP_taca</recordid><startdate>20110802</startdate><enddate>20110802</enddate><creator>DiPatrizio, Nicholas V</creator><creator>Astarita, Giuseppe</creator><creator>Schwartz, Gary</creator><creator>Li, Xiaosong</creator><creator>Piomelli, Daniele</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110802</creationdate><title>Endocannabinoid signal in the gut controls dietary fat intake</title><author>DiPatrizio, Nicholas V ; Astarita, Giuseppe ; Schwartz, Gary ; Li, Xiaosong ; Piomelli, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-58d36ae1a929f8279ecebcf4e67076282f3d3ae4db2bcf5213f579b7494bb61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amidohydrolases - metabolism</topic><topic>Animals</topic><topic>antagonists</topic><topic>Benzyl Compounds - pharmacology</topic><topic>Biological Sciences</topic><topic>Body fat</topic><topic>brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Cannabinoid Receptor Modulators - metabolism</topic><topic>Cannulae</topic><topic>Corn oil</topic><topic>Diet</topic><topic>Dietary Fats - administration &amp; dosage</topic><topic>Dietary Fats - metabolism</topic><topic>drugs</topic><topic>duodenum</topic><topic>Eating - drug effects</topic><topic>Eating - physiology</topic><topic>Endocannabinoids</topic><topic>energy balance</topic><topic>enzyme activity</topic><topic>Fat intake</topic><topic>food intake</topic><topic>foods</topic><topic>Gastrointestinal Tract - drug effects</topic><topic>Gastrointestinal Tract - metabolism</topic><topic>Intestine, Small - drug effects</topic><topic>Intestine, Small - metabolism</topic><topic>Lipids</topic><topic>Lipids - analysis</topic><topic>Liquids</topic><topic>Male</topic><topic>metabolism</topic><topic>Phospholipase D - metabolism</topic><topic>Piperidines - pharmacology</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrroles - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Receptors</topic><topic>Rimonabant</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Stomach</topic><topic>T cell receptors</topic><topic>Vagotomy</topic><topic>vagus nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiPatrizio, Nicholas V</creatorcontrib><creatorcontrib>Astarita, Giuseppe</creatorcontrib><creatorcontrib>Schwartz, Gary</creatorcontrib><creatorcontrib>Li, Xiaosong</creatorcontrib><creatorcontrib>Piomelli, Daniele</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiPatrizio, Nicholas V</au><au>Astarita, Giuseppe</au><au>Schwartz, Gary</au><au>Li, Xiaosong</au><au>Piomelli, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocannabinoid signal in the gut controls dietary fat intake</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-08-02</date><risdate>2011</risdate><volume>108</volume><issue>31</issue><spage>12904</spage><epage>12908</epage><pages>12904-12908</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB₁-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB₁-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21730161</pmid><doi>10.1073/pnas.1104675108</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-08, Vol.108 (31), p.12904-12908
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_31_12904
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amidohydrolases - metabolism
Animals
antagonists
Benzyl Compounds - pharmacology
Biological Sciences
Body fat
brain
Brain - drug effects
Brain - metabolism
Cannabinoid Receptor Modulators - metabolism
Cannulae
Corn oil
Diet
Dietary Fats - administration & dosage
Dietary Fats - metabolism
drugs
duodenum
Eating - drug effects
Eating - physiology
Endocannabinoids
energy balance
enzyme activity
Fat intake
food intake
foods
Gastrointestinal Tract - drug effects
Gastrointestinal Tract - metabolism
Intestine, Small - drug effects
Intestine, Small - metabolism
Lipids
Lipids - analysis
Liquids
Male
metabolism
Phospholipase D - metabolism
Piperidines - pharmacology
Pyrazoles - pharmacology
Pyrroles - pharmacology
Rats
Rats, Sprague-Dawley
Receptor, Cannabinoid, CB1 - antagonists & inhibitors
Receptor, Cannabinoid, CB1 - metabolism
Receptors
Rimonabant
Signal transduction
Signal Transduction - drug effects
Signal Transduction - physiology
Stomach
T cell receptors
Vagotomy
vagus nerve
title Endocannabinoid signal in the gut controls dietary fat intake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocannabinoid%20signal%20in%20the%20gut%20controls%20dietary%20fat%20intake&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=DiPatrizio,%20Nicholas%20V&rft.date=2011-08-02&rft.volume=108&rft.issue=31&rft.spage=12904&rft.epage=12908&rft.pages=12904-12908&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1104675108&rft_dat=%3Cjstor_pnas_%3E27979109%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881298407&rft_id=info:pmid/21730161&rft_jstor_id=27979109&rfr_iscdi=true