MicroRNA regulation of homeostatic synaptic plasticity

Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. Micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-07, Vol.108 (28), p.11650-11655
Hauptverfasser: Cohen, Jonathan E, Lee, Philip R, Chen, Shan, Li, Wei, Fields, R. Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11655
container_issue 28
container_start_page 11650
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Cohen, Jonathan E
Lee, Philip R
Chen, Shan
Li, Wei
Fields, R. Douglas
description Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. MicroRNAs (miRNAs) exert regulatory control over mRNA stability and translation and may contribute to local and activity-dependent posttranscriptional control of synapse-associated mRNAs. However, identifying miRNAs that function through posttranscriptional gene silencing at synapses has remained elusive. Using a bioinformatics screen to identify sequence motifs enriched in the 3'UTR of rapidly destabilized mRNAs, we identified a developmentally and activity-regulated miRNA (miR-485) that controls dendritic spine number and synapse formation in an activity-dependent homeostatic manner. We find that many plasticity-associated genes contain predicted miR-485 binding sites and further identify the presynaptic protein SV2A as a target of miR-485. miR-485 negatively regulated dendritic spine density, postsynaptic density 95 (PSD-95) clustering, and surface expression of GluR2. Furthermore, miR-485 overexpression reduced spontaneous synaptic responses and transmitter release, as measured by miniature excitatory postsynaptic current (EPSC) analysis and FM 1-43 staining. SV2A knockdown mimicked the effects of miR-485, and these effects were reversed by SV2A overexpression. Moreover, 5 d of increased synaptic activity induced homeostatic changes in synaptic specializations that were blocked by a miR-485 inhibitor. Our findings reveal a role for this previously uncharacterized miRNA and the presynaptic protein SV2A in homeostatic plasticity and nervous system development, with possible implications in neurological disorders (e.g., Huntington and Alzheimer's disease), where miR-485 has been found to be dysregulated.
doi_str_mv 10.1073/pnas.1017576108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_28_11650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27978854</jstor_id><sourcerecordid>27978854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-fe11abe98e4eb53108f0bd0cb8df370853842a89acac104981e0c25d382933ec3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvLmRMQcYFL6Ez8fUGqqhYqFSoBPVuO19lmlY1TO0Ha_x5Hu3ShBw7W2JrfPD3PI-QVwkcESU-H3qZ8Q8mlQFBPyAJBYymYhqdkAVDJUrGKHZEXKa0BQHMFz8lRhUJLjrAg4mvrYvj-7ayIfjV1dmxDX4SmuAsbH9KY365I294O82XobMq1Hbcn5Flju-Rf7usxub28-Hn-pby--Xx1fnZdOq70WDYe0dZeK898zWl22EC9BFerZUMlKE6zO6u0ddYhMK3Qg6v4kqpKU-odPSafdrrDVG_80vl-jLYzQ2w3Nm5NsK35t9O3d2YVfhmKVOSTBd7vBWK4n3wazaZNzned7X2YklFSSK0Zskx--C-JUCmQigvM6LtH6DpMsc-LyHoSKg5s1jvdQXm_KUXfPLhGMHN4Zg7PHMLLE2_-_uwD_yetDBR7YJ48yClTKYMo-Iy83iHrNIZ4kJBaKsVnV293_cYGY1exTeb2RwUoAFAjU5L-Bttqsng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877025044</pqid></control><display><type>article</type><title>MicroRNA regulation of homeostatic synaptic plasticity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cohen, Jonathan E ; Lee, Philip R ; Chen, Shan ; Li, Wei ; Fields, R. Douglas</creator><creatorcontrib>Cohen, Jonathan E ; Lee, Philip R ; Chen, Shan ; Li, Wei ; Fields, R. Douglas</creatorcontrib><description>Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. MicroRNAs (miRNAs) exert regulatory control over mRNA stability and translation and may contribute to local and activity-dependent posttranscriptional control of synapse-associated mRNAs. However, identifying miRNAs that function through posttranscriptional gene silencing at synapses has remained elusive. Using a bioinformatics screen to identify sequence motifs enriched in the 3'UTR of rapidly destabilized mRNAs, we identified a developmentally and activity-regulated miRNA (miR-485) that controls dendritic spine number and synapse formation in an activity-dependent homeostatic manner. We find that many plasticity-associated genes contain predicted miR-485 binding sites and further identify the presynaptic protein SV2A as a target of miR-485. miR-485 negatively regulated dendritic spine density, postsynaptic density 95 (PSD-95) clustering, and surface expression of GluR2. Furthermore, miR-485 overexpression reduced spontaneous synaptic responses and transmitter release, as measured by miniature excitatory postsynaptic current (EPSC) analysis and FM 1-43 staining. SV2A knockdown mimicked the effects of miR-485, and these effects were reversed by SV2A overexpression. Moreover, 5 d of increased synaptic activity induced homeostatic changes in synaptic specializations that were blocked by a miR-485 inhibitor. Our findings reveal a role for this previously uncharacterized miRNA and the presynaptic protein SV2A in homeostatic plasticity and nervous system development, with possible implications in neurological disorders (e.g., Huntington and Alzheimer's disease), where miR-485 has been found to be dysregulated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1017576108</identifier><identifier>PMID: 21697510</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3' Untranslated Regions ; Alzheimer disease ; Alzheimer's disease ; Animals ; Base Sequence ; Binding sites ; Bioinformatics ; Biological Sciences ; Brain ; Cells, Cultured ; Connectivity ; Conserved Sequence ; Dendritic spines ; Dendritic Spines - metabolism ; Developmental biology ; Gene expression regulation ; Gene Knockdown Techniques ; genes ; Hippocampus - cytology ; Hippocampus - metabolism ; Homeostasis ; Membrane Glycoproteins - antagonists &amp; inhibitors ; Membrane Glycoproteins - genetics ; Membrane Glycoproteins - metabolism ; Messenger RNA ; MicroRNA ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Molecular Sequence Data ; Nerve Tissue Proteins - antagonists &amp; inhibitors ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; neurodevelopment ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Neurons ; Neuroscience ; Plasticity ; Presynaptic Terminals - metabolism ; Rats ; Ribonucleic acid ; RNA ; RNA interference ; RNA Processing, Post-Transcriptional ; RNA Stability ; Sequence Homology, Nucleic Acid ; Spine ; staining ; synapse ; Synapses ; Three prime untranslated regions ; translation (genetics)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-07, Vol.108 (28), p.11650-11655</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 12, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-fe11abe98e4eb53108f0bd0cb8df370853842a89acac104981e0c25d382933ec3</citedby><cites>FETCH-LOGICAL-c589t-fe11abe98e4eb53108f0bd0cb8df370853842a89acac104981e0c25d382933ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27978854$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27978854$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21697510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Jonathan E</creatorcontrib><creatorcontrib>Lee, Philip R</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fields, R. Douglas</creatorcontrib><title>MicroRNA regulation of homeostatic synaptic plasticity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. MicroRNAs (miRNAs) exert regulatory control over mRNA stability and translation and may contribute to local and activity-dependent posttranscriptional control of synapse-associated mRNAs. However, identifying miRNAs that function through posttranscriptional gene silencing at synapses has remained elusive. Using a bioinformatics screen to identify sequence motifs enriched in the 3'UTR of rapidly destabilized mRNAs, we identified a developmentally and activity-regulated miRNA (miR-485) that controls dendritic spine number and synapse formation in an activity-dependent homeostatic manner. We find that many plasticity-associated genes contain predicted miR-485 binding sites and further identify the presynaptic protein SV2A as a target of miR-485. miR-485 negatively regulated dendritic spine density, postsynaptic density 95 (PSD-95) clustering, and surface expression of GluR2. Furthermore, miR-485 overexpression reduced spontaneous synaptic responses and transmitter release, as measured by miniature excitatory postsynaptic current (EPSC) analysis and FM 1-43 staining. SV2A knockdown mimicked the effects of miR-485, and these effects were reversed by SV2A overexpression. Moreover, 5 d of increased synaptic activity induced homeostatic changes in synaptic specializations that were blocked by a miR-485 inhibitor. Our findings reveal a role for this previously uncharacterized miRNA and the presynaptic protein SV2A in homeostatic plasticity and nervous system development, with possible implications in neurological disorders (e.g., Huntington and Alzheimer's disease), where miR-485 has been found to be dysregulated.</description><subject>3' Untranslated Regions</subject><subject>Alzheimer disease</subject><subject>Alzheimer's disease</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cells, Cultured</subject><subject>Connectivity</subject><subject>Conserved Sequence</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Developmental biology</subject><subject>Gene expression regulation</subject><subject>Gene Knockdown Techniques</subject><subject>genes</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Homeostasis</subject><subject>Membrane Glycoproteins - antagonists &amp; inhibitors</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Messenger RNA</subject><subject>MicroRNA</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Nerve Tissue Proteins - antagonists &amp; inhibitors</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neurodevelopment</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Plasticity</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA Stability</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Spine</subject><subject>staining</subject><subject>synapse</subject><subject>Synapses</subject><subject>Three prime untranslated regions</subject><subject>translation (genetics)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvLmRMQcYFL6Ez8fUGqqhYqFSoBPVuO19lmlY1TO0Ha_x5Hu3ShBw7W2JrfPD3PI-QVwkcESU-H3qZ8Q8mlQFBPyAJBYymYhqdkAVDJUrGKHZEXKa0BQHMFz8lRhUJLjrAg4mvrYvj-7ayIfjV1dmxDX4SmuAsbH9KY365I294O82XobMq1Hbcn5Flju-Rf7usxub28-Hn-pby--Xx1fnZdOq70WDYe0dZeK898zWl22EC9BFerZUMlKE6zO6u0ddYhMK3Qg6v4kqpKU-odPSafdrrDVG_80vl-jLYzQ2w3Nm5NsK35t9O3d2YVfhmKVOSTBd7vBWK4n3wazaZNzned7X2YklFSSK0Zskx--C-JUCmQigvM6LtH6DpMsc-LyHoSKg5s1jvdQXm_KUXfPLhGMHN4Zg7PHMLLE2_-_uwD_yetDBR7YJ48yClTKYMo-Iy83iHrNIZ4kJBaKsVnV293_cYGY1exTeb2RwUoAFAjU5L-Bttqsng</recordid><startdate>20110712</startdate><enddate>20110712</enddate><creator>Cohen, Jonathan E</creator><creator>Lee, Philip R</creator><creator>Chen, Shan</creator><creator>Li, Wei</creator><creator>Fields, R. Douglas</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110712</creationdate><title>MicroRNA regulation of homeostatic synaptic plasticity</title><author>Cohen, Jonathan E ; Lee, Philip R ; Chen, Shan ; Li, Wei ; Fields, R. Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-fe11abe98e4eb53108f0bd0cb8df370853842a89acac104981e0c25d382933ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>3' Untranslated Regions</topic><topic>Alzheimer disease</topic><topic>Alzheimer's disease</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cells, Cultured</topic><topic>Connectivity</topic><topic>Conserved Sequence</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Developmental biology</topic><topic>Gene expression regulation</topic><topic>Gene Knockdown Techniques</topic><topic>genes</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Homeostasis</topic><topic>Membrane Glycoproteins - antagonists &amp; inhibitors</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Messenger RNA</topic><topic>MicroRNA</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Nerve Tissue Proteins - antagonists &amp; inhibitors</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neurodevelopment</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Plasticity</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA Stability</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Spine</topic><topic>staining</topic><topic>synapse</topic><topic>Synapses</topic><topic>Three prime untranslated regions</topic><topic>translation (genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Jonathan E</creatorcontrib><creatorcontrib>Lee, Philip R</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Fields, R. Douglas</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Jonathan E</au><au>Lee, Philip R</au><au>Chen, Shan</au><au>Li, Wei</au><au>Fields, R. Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA regulation of homeostatic synaptic plasticity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-07-12</date><risdate>2011</risdate><volume>108</volume><issue>28</issue><spage>11650</spage><epage>11655</epage><pages>11650-11655</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Homeostatic mechanisms are required to control formation and maintenance of synaptic connections to maintain the general level of neural impulse activity within normal limits. How genes controlling these processes are co-coordinately regulated during homeostatic synaptic plasticity is unknown. MicroRNAs (miRNAs) exert regulatory control over mRNA stability and translation and may contribute to local and activity-dependent posttranscriptional control of synapse-associated mRNAs. However, identifying miRNAs that function through posttranscriptional gene silencing at synapses has remained elusive. Using a bioinformatics screen to identify sequence motifs enriched in the 3'UTR of rapidly destabilized mRNAs, we identified a developmentally and activity-regulated miRNA (miR-485) that controls dendritic spine number and synapse formation in an activity-dependent homeostatic manner. We find that many plasticity-associated genes contain predicted miR-485 binding sites and further identify the presynaptic protein SV2A as a target of miR-485. miR-485 negatively regulated dendritic spine density, postsynaptic density 95 (PSD-95) clustering, and surface expression of GluR2. Furthermore, miR-485 overexpression reduced spontaneous synaptic responses and transmitter release, as measured by miniature excitatory postsynaptic current (EPSC) analysis and FM 1-43 staining. SV2A knockdown mimicked the effects of miR-485, and these effects were reversed by SV2A overexpression. Moreover, 5 d of increased synaptic activity induced homeostatic changes in synaptic specializations that were blocked by a miR-485 inhibitor. Our findings reveal a role for this previously uncharacterized miRNA and the presynaptic protein SV2A in homeostatic plasticity and nervous system development, with possible implications in neurological disorders (e.g., Huntington and Alzheimer's disease), where miR-485 has been found to be dysregulated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21697510</pmid><doi>10.1073/pnas.1017576108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-07, Vol.108 (28), p.11650-11655
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_28_11650
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 3' Untranslated Regions
Alzheimer disease
Alzheimer's disease
Animals
Base Sequence
Binding sites
Bioinformatics
Biological Sciences
Brain
Cells, Cultured
Connectivity
Conserved Sequence
Dendritic spines
Dendritic Spines - metabolism
Developmental biology
Gene expression regulation
Gene Knockdown Techniques
genes
Hippocampus - cytology
Hippocampus - metabolism
Homeostasis
Membrane Glycoproteins - antagonists & inhibitors
Membrane Glycoproteins - genetics
Membrane Glycoproteins - metabolism
Messenger RNA
MicroRNA
MicroRNAs - genetics
MicroRNAs - metabolism
Molecular Sequence Data
Nerve Tissue Proteins - antagonists & inhibitors
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
neurodevelopment
Neuronal Plasticity - genetics
Neuronal Plasticity - physiology
Neurons
Neuroscience
Plasticity
Presynaptic Terminals - metabolism
Rats
Ribonucleic acid
RNA
RNA interference
RNA Processing, Post-Transcriptional
RNA Stability
Sequence Homology, Nucleic Acid
Spine
staining
synapse
Synapses
Three prime untranslated regions
translation (genetics)
title MicroRNA regulation of homeostatic synaptic plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20regulation%20of%20homeostatic%20synaptic%20plasticity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cohen,%20Jonathan%20E&rft.date=2011-07-12&rft.volume=108&rft.issue=28&rft.spage=11650&rft.epage=11655&rft.pages=11650-11655&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1017576108&rft_dat=%3Cjstor_pnas_%3E27978854%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=877025044&rft_id=info:pmid/21697510&rft_jstor_id=27978854&rfr_iscdi=true