Dynamic reconfiguration of human brain networks during learning
Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (18), p.7641-7646 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7646 |
---|---|
container_issue | 18 |
container_start_page | 7641 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Bassett, Danielle S Wymbs, Nicholas F Porter, Mason A Mucha, Peter J Carlson, Jean M Grafton, Scott T |
description | Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance. |
doi_str_mv | 10.1073/pnas.1018985108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_18_7641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242234</jstor_id><sourcerecordid>41242234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EoqFw5gSsuMBl6dhrr8cXECqfUiUO0LPlde3UYWOn9i6o_z2OEhLgwMkj-TdvZt4j5DGFVxRkd7aJptSKokJBAe-QBQVF254ruEsWAEy2yBk_IQ9KWQGAEgj3yQmjAphgYkHevLuNZh1sk51N0YflnM0UUmySb67ntYnNkE2ITXTTz5S_l-ZqziEum9GZHGvxkNzzZizu0f49JZcf3n87_9RefPn4-fztRWsF4tQOXnRA7eAtogQpB-YQOXBJee8sQxy8h96iUpQOrKMAvbfCYNch557R7pS83ulu5mHtrqyLUzaj3uSwNvlWJxP03z8xXOtl-qE7QBQSq8CLvUBON7Mrk16HYt04mujSXDRWz3ouUVby5X_JaresPkrFKvr8H3SV5hyrEVVPiL6epyp0toNsTqVk5w9bU9DbFPU2RX1MsXY8_fPYA_87tgo82wPbzqMcaopa9nzr15MdsSpTygeEU8YZ6_hRwZukzTKHoi-_MqA9AFV1hup-AVUXtLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865567149</pqid></control><display><type>article</type><title>Dynamic reconfiguration of human brain networks during learning</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</creator><creatorcontrib>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</creatorcontrib><description>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1018985108</identifier><identifier>PMID: 21502525</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptability ; Adaptation, Physiological - physiology ; Adult ; Architecture ; Behavior ; Biological Sciences ; Brain ; Brain - anatomy & histology ; Brain - physiology ; Community structure ; Connectivity ; Development ; Evolution ; Female ; Human subjects ; Humans ; Learning ; Learning - physiology ; Learning modules ; Magnetic Resonance Imaging ; Male ; Models, Neurological ; Modular structures ; Modularity ; Motor ability ; Motor skill learning ; Nerve Net - anatomy & histology ; Nerve Net - physiology ; Neural networks ; Neuronal Plasticity - physiology ; neurophysiology ; Nodes ; Physical Sciences ; Psychomotor Performance - physiology ; Statistics ; Time windows</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (18), p.7641-7646</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 3, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</citedby><cites>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242234$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242234$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21502525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Wymbs, Nicholas F</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Carlson, Jean M</creatorcontrib><creatorcontrib>Grafton, Scott T</creatorcontrib><title>Dynamic reconfiguration of human brain networks during learning</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</description><subject>Adaptability</subject><subject>Adaptation, Physiological - physiology</subject><subject>Adult</subject><subject>Architecture</subject><subject>Behavior</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - physiology</subject><subject>Community structure</subject><subject>Connectivity</subject><subject>Development</subject><subject>Evolution</subject><subject>Female</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Learning modules</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Modular structures</subject><subject>Modularity</subject><subject>Motor ability</subject><subject>Motor skill learning</subject><subject>Nerve Net - anatomy & histology</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neuronal Plasticity - physiology</subject><subject>neurophysiology</subject><subject>Nodes</subject><subject>Physical Sciences</subject><subject>Psychomotor Performance - physiology</subject><subject>Statistics</subject><subject>Time windows</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS0EoqFw5gSsuMBl6dhrr8cXECqfUiUO0LPlde3UYWOn9i6o_z2OEhLgwMkj-TdvZt4j5DGFVxRkd7aJptSKokJBAe-QBQVF254ruEsWAEy2yBk_IQ9KWQGAEgj3yQmjAphgYkHevLuNZh1sk51N0YflnM0UUmySb67ntYnNkE2ITXTTz5S_l-ZqziEum9GZHGvxkNzzZizu0f49JZcf3n87_9RefPn4-fztRWsF4tQOXnRA7eAtogQpB-YQOXBJee8sQxy8h96iUpQOrKMAvbfCYNch557R7pS83ulu5mHtrqyLUzaj3uSwNvlWJxP03z8xXOtl-qE7QBQSq8CLvUBON7Mrk16HYt04mujSXDRWz3ouUVby5X_JaresPkrFKvr8H3SV5hyrEVVPiL6epyp0toNsTqVk5w9bU9DbFPU2RX1MsXY8_fPYA_87tgo82wPbzqMcaopa9nzr15MdsSpTygeEU8YZ6_hRwZukzTKHoi-_MqA9AFV1hup-AVUXtLQ</recordid><startdate>20110503</startdate><enddate>20110503</enddate><creator>Bassett, Danielle S</creator><creator>Wymbs, Nicholas F</creator><creator>Porter, Mason A</creator><creator>Mucha, Peter J</creator><creator>Carlson, Jean M</creator><creator>Grafton, Scott T</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110503</creationdate><title>Dynamic reconfiguration of human brain networks during learning</title><author>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptability</topic><topic>Adaptation, Physiological - physiology</topic><topic>Adult</topic><topic>Architecture</topic><topic>Behavior</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - physiology</topic><topic>Community structure</topic><topic>Connectivity</topic><topic>Development</topic><topic>Evolution</topic><topic>Female</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Learning modules</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Modular structures</topic><topic>Modularity</topic><topic>Motor ability</topic><topic>Motor skill learning</topic><topic>Nerve Net - anatomy & histology</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neuronal Plasticity - physiology</topic><topic>neurophysiology</topic><topic>Nodes</topic><topic>Physical Sciences</topic><topic>Psychomotor Performance - physiology</topic><topic>Statistics</topic><topic>Time windows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Wymbs, Nicholas F</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Carlson, Jean M</creatorcontrib><creatorcontrib>Grafton, Scott T</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassett, Danielle S</au><au>Wymbs, Nicholas F</au><au>Porter, Mason A</au><au>Mucha, Peter J</au><au>Carlson, Jean M</au><au>Grafton, Scott T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic reconfiguration of human brain networks during learning</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-03</date><risdate>2011</risdate><volume>108</volume><issue>18</issue><spage>7641</spage><epage>7646</epage><pages>7641-7646</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21502525</pmid><doi>10.1073/pnas.1018985108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (18), p.7641-7646 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_108_18_7641 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adaptability Adaptation, Physiological - physiology Adult Architecture Behavior Biological Sciences Brain Brain - anatomy & histology Brain - physiology Community structure Connectivity Development Evolution Female Human subjects Humans Learning Learning - physiology Learning modules Magnetic Resonance Imaging Male Models, Neurological Modular structures Modularity Motor ability Motor skill learning Nerve Net - anatomy & histology Nerve Net - physiology Neural networks Neuronal Plasticity - physiology neurophysiology Nodes Physical Sciences Psychomotor Performance - physiology Statistics Time windows |
title | Dynamic reconfiguration of human brain networks during learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20reconfiguration%20of%20human%20brain%20networks%20during%20learning&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bassett,%20Danielle%20S&rft.date=2011-05-03&rft.volume=108&rft.issue=18&rft.spage=7641&rft.epage=7646&rft.pages=7641-7646&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1018985108&rft_dat=%3Cjstor_pnas_%3E41242234%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865567149&rft_id=info:pmid/21502525&rft_jstor_id=41242234&rfr_iscdi=true |