Dynamic reconfiguration of human brain networks during learning

Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2011-05, Vol.108 (18), p.7641-7646
Hauptverfasser: Bassett, Danielle S, Wymbs, Nicholas F, Porter, Mason A, Mucha, Peter J, Carlson, Jean M, Grafton, Scott T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7646
container_issue 18
container_start_page 7641
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Bassett, Danielle S
Wymbs, Nicholas F
Porter, Mason A
Mucha, Peter J
Carlson, Jean M
Grafton, Scott T
description Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.
doi_str_mv 10.1073/pnas.1018985108
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_18_7641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242234</jstor_id><sourcerecordid>41242234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</originalsourceid><addsrcrecordid>eNp9kc1vEzEQxS0EoqFw5gSsuMBl6dhrr8cXECqfUiUO0LPlde3UYWOn9i6o_z2OEhLgwMkj-TdvZt4j5DGFVxRkd7aJptSKokJBAe-QBQVF254ruEsWAEy2yBk_IQ9KWQGAEgj3yQmjAphgYkHevLuNZh1sk51N0YflnM0UUmySb67ntYnNkE2ITXTTz5S_l-ZqziEum9GZHGvxkNzzZizu0f49JZcf3n87_9RefPn4-fztRWsF4tQOXnRA7eAtogQpB-YQOXBJee8sQxy8h96iUpQOrKMAvbfCYNch557R7pS83ulu5mHtrqyLUzaj3uSwNvlWJxP03z8xXOtl-qE7QBQSq8CLvUBON7Mrk16HYt04mujSXDRWz3ouUVby5X_JaresPkrFKvr8H3SV5hyrEVVPiL6epyp0toNsTqVk5w9bU9DbFPU2RX1MsXY8_fPYA_87tgo82wPbzqMcaopa9nzr15MdsSpTygeEU8YZ6_hRwZukzTKHoi-_MqA9AFV1hup-AVUXtLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865567149</pqid></control><display><type>article</type><title>Dynamic reconfiguration of human brain networks during learning</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</creator><creatorcontrib>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</creatorcontrib><description>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1018985108</identifier><identifier>PMID: 21502525</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptability ; Adaptation, Physiological - physiology ; Adult ; Architecture ; Behavior ; Biological Sciences ; Brain ; Brain - anatomy &amp; histology ; Brain - physiology ; Community structure ; Connectivity ; Development ; Evolution ; Female ; Human subjects ; Humans ; Learning ; Learning - physiology ; Learning modules ; Magnetic Resonance Imaging ; Male ; Models, Neurological ; Modular structures ; Modularity ; Motor ability ; Motor skill learning ; Nerve Net - anatomy &amp; histology ; Nerve Net - physiology ; Neural networks ; Neuronal Plasticity - physiology ; neurophysiology ; Nodes ; Physical Sciences ; Psychomotor Performance - physiology ; Statistics ; Time windows</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (18), p.7641-7646</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 3, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</citedby><cites>FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242234$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242234$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21502525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Wymbs, Nicholas F</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Carlson, Jean M</creatorcontrib><creatorcontrib>Grafton, Scott T</creatorcontrib><title>Dynamic reconfiguration of human brain networks during learning</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</description><subject>Adaptability</subject><subject>Adaptation, Physiological - physiology</subject><subject>Adult</subject><subject>Architecture</subject><subject>Behavior</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Community structure</subject><subject>Connectivity</subject><subject>Development</subject><subject>Evolution</subject><subject>Female</subject><subject>Human subjects</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Learning modules</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Modular structures</subject><subject>Modularity</subject><subject>Motor ability</subject><subject>Motor skill learning</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - physiology</subject><subject>Neural networks</subject><subject>Neuronal Plasticity - physiology</subject><subject>neurophysiology</subject><subject>Nodes</subject><subject>Physical Sciences</subject><subject>Psychomotor Performance - physiology</subject><subject>Statistics</subject><subject>Time windows</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1vEzEQxS0EoqFw5gSsuMBl6dhrr8cXECqfUiUO0LPlde3UYWOn9i6o_z2OEhLgwMkj-TdvZt4j5DGFVxRkd7aJptSKokJBAe-QBQVF254ruEsWAEy2yBk_IQ9KWQGAEgj3yQmjAphgYkHevLuNZh1sk51N0YflnM0UUmySb67ntYnNkE2ITXTTz5S_l-ZqziEum9GZHGvxkNzzZizu0f49JZcf3n87_9RefPn4-fztRWsF4tQOXnRA7eAtogQpB-YQOXBJee8sQxy8h96iUpQOrKMAvbfCYNch557R7pS83ulu5mHtrqyLUzaj3uSwNvlWJxP03z8xXOtl-qE7QBQSq8CLvUBON7Mrk16HYt04mujSXDRWz3ouUVby5X_JaresPkrFKvr8H3SV5hyrEVVPiL6epyp0toNsTqVk5w9bU9DbFPU2RX1MsXY8_fPYA_87tgo82wPbzqMcaopa9nzr15MdsSpTygeEU8YZ6_hRwZukzTKHoi-_MqA9AFV1hup-AVUXtLQ</recordid><startdate>20110503</startdate><enddate>20110503</enddate><creator>Bassett, Danielle S</creator><creator>Wymbs, Nicholas F</creator><creator>Porter, Mason A</creator><creator>Mucha, Peter J</creator><creator>Carlson, Jean M</creator><creator>Grafton, Scott T</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110503</creationdate><title>Dynamic reconfiguration of human brain networks during learning</title><author>Bassett, Danielle S ; Wymbs, Nicholas F ; Porter, Mason A ; Mucha, Peter J ; Carlson, Jean M ; Grafton, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-bf5301cbfc887077b2e884047146ec288bff06c89911b231006fc5a833844f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptability</topic><topic>Adaptation, Physiological - physiology</topic><topic>Adult</topic><topic>Architecture</topic><topic>Behavior</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Community structure</topic><topic>Connectivity</topic><topic>Development</topic><topic>Evolution</topic><topic>Female</topic><topic>Human subjects</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Learning modules</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Modular structures</topic><topic>Modularity</topic><topic>Motor ability</topic><topic>Motor skill learning</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - physiology</topic><topic>Neural networks</topic><topic>Neuronal Plasticity - physiology</topic><topic>neurophysiology</topic><topic>Nodes</topic><topic>Physical Sciences</topic><topic>Psychomotor Performance - physiology</topic><topic>Statistics</topic><topic>Time windows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassett, Danielle S</creatorcontrib><creatorcontrib>Wymbs, Nicholas F</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Carlson, Jean M</creatorcontrib><creatorcontrib>Grafton, Scott T</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassett, Danielle S</au><au>Wymbs, Nicholas F</au><au>Porter, Mason A</au><au>Mucha, Peter J</au><au>Carlson, Jean M</au><au>Grafton, Scott T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic reconfiguration of human brain networks during learning</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-05-03</date><risdate>2011</risdate><volume>108</volume><issue>18</issue><spage>7641</spage><epage>7646</epage><pages>7641-7646</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes--flexibility and selection--must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21502525</pmid><doi>10.1073/pnas.1018985108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-05, Vol.108 (18), p.7641-7646
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_18_7641
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adaptability
Adaptation, Physiological - physiology
Adult
Architecture
Behavior
Biological Sciences
Brain
Brain - anatomy & histology
Brain - physiology
Community structure
Connectivity
Development
Evolution
Female
Human subjects
Humans
Learning
Learning - physiology
Learning modules
Magnetic Resonance Imaging
Male
Models, Neurological
Modular structures
Modularity
Motor ability
Motor skill learning
Nerve Net - anatomy & histology
Nerve Net - physiology
Neural networks
Neuronal Plasticity - physiology
neurophysiology
Nodes
Physical Sciences
Psychomotor Performance - physiology
Statistics
Time windows
title Dynamic reconfiguration of human brain networks during learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20reconfiguration%20of%20human%20brain%20networks%20during%20learning&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Bassett,%20Danielle%20S&rft.date=2011-05-03&rft.volume=108&rft.issue=18&rft.spage=7641&rft.epage=7646&rft.pages=7641-7646&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1018985108&rft_dat=%3Cjstor_pnas_%3E41242234%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865567149&rft_id=info:pmid/21502525&rft_jstor_id=41242234&rfr_iscdi=true