Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF
Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications....
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (9), p.4299-4304 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4304 |
---|---|
container_issue | 9 |
container_start_page | 4299 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Murphy, Eric A Shields, David J Stoletov, Konstantin Dneprovskaia, Elena McElroy, Michele Greenberg, Joshua I Lindquist, Jeff Acevedo, Lisette M Anand, Sudarshan Majeti, Bharat Kumar Tsigelny, Igor Saldanha, Adrian Walsh, Breda Hoffman, Robert M Bouvet, Michael Klemke, Richard L Vogt, Peter K Arnold, Lee Wrasidlo, Wolfgang Cheresh, David A |
description | Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRβ and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRβ and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRβ and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas. |
doi_str_mv | 10.1073/pnas.0909299107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_9_4299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537119</jstor_id><sourcerecordid>40537119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8ae2e7864241a89a34032d41eb9c328c00685c0e07b851a725c987129d97c3b53</originalsourceid><addsrcrecordid>eNpVkd1OGzEQha2KqqS0171q8QssGf_s2r6pxE8DSEitaLm2vF5nY5SsI9sJgsfiQXgmvEoE6o2tmfPNGVsHoW8ETggINl0PJp2AAkWVKo0PaEJAkarhCg7QBICKSnLKD9HnlO4BQNUSPqFDCqTmVJAJerrwKW7W2YcBhzk2Q-9D7waXfCpFh_NmFSLuY3jIC_zgy2EKGM1y-YiNzX7rcBc3Pc4Lk3HKpvVL_-RSqR32w54o_exG-z8Xl7Pbl-fpWXV7OvuCPs7NMrmv-_sI3c1-_Tu_qm5-X16fn95UlkOTK2kcdUI25RvESGUYB0Y7TlyrLKPSAjSytuBAtLImRtDaKikIVZ0SlrU1O0I_d77rTbtynXVDLu_X6-hXJj7qYLz-Xxn8Qvdhq6nkAKIpBtOdgY0hpejmb7ME9BiDHmPQ7zGUiR_7laPwTgutNC9MAb7vgPuUQ3wjONRMEDLqxzt9boI2ffRJ3_0tqTEgkoAExl4BQ1-Y4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Murphy, Eric A ; Shields, David J ; Stoletov, Konstantin ; Dneprovskaia, Elena ; McElroy, Michele ; Greenberg, Joshua I ; Lindquist, Jeff ; Acevedo, Lisette M ; Anand, Sudarshan ; Majeti, Bharat Kumar ; Tsigelny, Igor ; Saldanha, Adrian ; Walsh, Breda ; Hoffman, Robert M ; Bouvet, Michael ; Klemke, Richard L ; Vogt, Peter K ; Arnold, Lee ; Wrasidlo, Wolfgang ; Cheresh, David A</creator><creatorcontrib>Murphy, Eric A ; Shields, David J ; Stoletov, Konstantin ; Dneprovskaia, Elena ; McElroy, Michele ; Greenberg, Joshua I ; Lindquist, Jeff ; Acevedo, Lisette M ; Anand, Sudarshan ; Majeti, Bharat Kumar ; Tsigelny, Igor ; Saldanha, Adrian ; Walsh, Breda ; Hoffman, Robert M ; Bouvet, Michael ; Klemke, Richard L ; Vogt, Peter K ; Arnold, Lee ; Wrasidlo, Wolfgang ; Cheresh, David A</creatorcontrib><description>Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRβ and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRβ and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRβ and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0909299107</identifier><identifier>PMID: 20154271</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><subject>Angiogenesis ; Biological Sciences ; Blood vessels ; Cancer ; Embryos ; Endothelial cells ; Kidney cells ; Mice ; Molecules ; Phosphorylation ; Physical Sciences ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4299-4304</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8ae2e7864241a89a34032d41eb9c328c00685c0e07b851a725c987129d97c3b53</citedby><cites>FETCH-LOGICAL-c406t-8ae2e7864241a89a34032d41eb9c328c00685c0e07b851a725c987129d97c3b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537119$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537119$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids></links><search><creatorcontrib>Murphy, Eric A</creatorcontrib><creatorcontrib>Shields, David J</creatorcontrib><creatorcontrib>Stoletov, Konstantin</creatorcontrib><creatorcontrib>Dneprovskaia, Elena</creatorcontrib><creatorcontrib>McElroy, Michele</creatorcontrib><creatorcontrib>Greenberg, Joshua I</creatorcontrib><creatorcontrib>Lindquist, Jeff</creatorcontrib><creatorcontrib>Acevedo, Lisette M</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Majeti, Bharat Kumar</creatorcontrib><creatorcontrib>Tsigelny, Igor</creatorcontrib><creatorcontrib>Saldanha, Adrian</creatorcontrib><creatorcontrib>Walsh, Breda</creatorcontrib><creatorcontrib>Hoffman, Robert M</creatorcontrib><creatorcontrib>Bouvet, Michael</creatorcontrib><creatorcontrib>Klemke, Richard L</creatorcontrib><creatorcontrib>Vogt, Peter K</creatorcontrib><creatorcontrib>Arnold, Lee</creatorcontrib><creatorcontrib>Wrasidlo, Wolfgang</creatorcontrib><creatorcontrib>Cheresh, David A</creatorcontrib><title>Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRβ and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRβ and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRβ and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas.</description><subject>Angiogenesis</subject><subject>Biological Sciences</subject><subject>Blood vessels</subject><subject>Cancer</subject><subject>Embryos</subject><subject>Endothelial cells</subject><subject>Kidney cells</subject><subject>Mice</subject><subject>Molecules</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkd1OGzEQha2KqqS0171q8QssGf_s2r6pxE8DSEitaLm2vF5nY5SsI9sJgsfiQXgmvEoE6o2tmfPNGVsHoW8ETggINl0PJp2AAkWVKo0PaEJAkarhCg7QBICKSnLKD9HnlO4BQNUSPqFDCqTmVJAJerrwKW7W2YcBhzk2Q-9D7waXfCpFh_NmFSLuY3jIC_zgy2EKGM1y-YiNzX7rcBc3Pc4Lk3HKpvVL_-RSqR32w54o_exG-z8Xl7Pbl-fpWXV7OvuCPs7NMrmv-_sI3c1-_Tu_qm5-X16fn95UlkOTK2kcdUI25RvESGUYB0Y7TlyrLKPSAjSytuBAtLImRtDaKikIVZ0SlrU1O0I_d77rTbtynXVDLu_X6-hXJj7qYLz-Xxn8Qvdhq6nkAKIpBtOdgY0hpejmb7ME9BiDHmPQ7zGUiR_7laPwTgutNC9MAb7vgPuUQ3wjONRMEDLqxzt9boI2ffRJ3_0tqTEgkoAExl4BQ1-Y4w</recordid><startdate>20100302</startdate><enddate>20100302</enddate><creator>Murphy, Eric A</creator><creator>Shields, David J</creator><creator>Stoletov, Konstantin</creator><creator>Dneprovskaia, Elena</creator><creator>McElroy, Michele</creator><creator>Greenberg, Joshua I</creator><creator>Lindquist, Jeff</creator><creator>Acevedo, Lisette M</creator><creator>Anand, Sudarshan</creator><creator>Majeti, Bharat Kumar</creator><creator>Tsigelny, Igor</creator><creator>Saldanha, Adrian</creator><creator>Walsh, Breda</creator><creator>Hoffman, Robert M</creator><creator>Bouvet, Michael</creator><creator>Klemke, Richard L</creator><creator>Vogt, Peter K</creator><creator>Arnold, Lee</creator><creator>Wrasidlo, Wolfgang</creator><creator>Cheresh, David A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20100302</creationdate><title>Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF</title><author>Murphy, Eric A ; Shields, David J ; Stoletov, Konstantin ; Dneprovskaia, Elena ; McElroy, Michele ; Greenberg, Joshua I ; Lindquist, Jeff ; Acevedo, Lisette M ; Anand, Sudarshan ; Majeti, Bharat Kumar ; Tsigelny, Igor ; Saldanha, Adrian ; Walsh, Breda ; Hoffman, Robert M ; Bouvet, Michael ; Klemke, Richard L ; Vogt, Peter K ; Arnold, Lee ; Wrasidlo, Wolfgang ; Cheresh, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8ae2e7864241a89a34032d41eb9c328c00685c0e07b851a725c987129d97c3b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Angiogenesis</topic><topic>Biological Sciences</topic><topic>Blood vessels</topic><topic>Cancer</topic><topic>Embryos</topic><topic>Endothelial cells</topic><topic>Kidney cells</topic><topic>Mice</topic><topic>Molecules</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Eric A</creatorcontrib><creatorcontrib>Shields, David J</creatorcontrib><creatorcontrib>Stoletov, Konstantin</creatorcontrib><creatorcontrib>Dneprovskaia, Elena</creatorcontrib><creatorcontrib>McElroy, Michele</creatorcontrib><creatorcontrib>Greenberg, Joshua I</creatorcontrib><creatorcontrib>Lindquist, Jeff</creatorcontrib><creatorcontrib>Acevedo, Lisette M</creatorcontrib><creatorcontrib>Anand, Sudarshan</creatorcontrib><creatorcontrib>Majeti, Bharat Kumar</creatorcontrib><creatorcontrib>Tsigelny, Igor</creatorcontrib><creatorcontrib>Saldanha, Adrian</creatorcontrib><creatorcontrib>Walsh, Breda</creatorcontrib><creatorcontrib>Hoffman, Robert M</creatorcontrib><creatorcontrib>Bouvet, Michael</creatorcontrib><creatorcontrib>Klemke, Richard L</creatorcontrib><creatorcontrib>Vogt, Peter K</creatorcontrib><creatorcontrib>Arnold, Lee</creatorcontrib><creatorcontrib>Wrasidlo, Wolfgang</creatorcontrib><creatorcontrib>Cheresh, David A</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Eric A</au><au>Shields, David J</au><au>Stoletov, Konstantin</au><au>Dneprovskaia, Elena</au><au>McElroy, Michele</au><au>Greenberg, Joshua I</au><au>Lindquist, Jeff</au><au>Acevedo, Lisette M</au><au>Anand, Sudarshan</au><au>Majeti, Bharat Kumar</au><au>Tsigelny, Igor</au><au>Saldanha, Adrian</au><au>Walsh, Breda</au><au>Hoffman, Robert M</au><au>Bouvet, Michael</au><au>Klemke, Richard L</au><au>Vogt, Peter K</au><au>Arnold, Lee</au><au>Wrasidlo, Wolfgang</au><au>Cheresh, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2010-03-02</date><risdate>2010</risdate><volume>107</volume><issue>9</issue><spage>4299</spage><epage>4304</epage><pages>4299-4304</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Kinases are known to regulate fundamental processes in cancer including tumor proliferation, metastasis, neovascularization, and chemoresistance. Accordingly, kinase inhibitors have been a major focus of drug development, and several kinase inhibitors are now approved for various cancer indications. Typically, kinase inhibitors are selected via high-throughput screening using catalytic kinase domains at low ATP concentration, and this process often yields ATP mimetics that lack specificity and/or function poorly in cells where ATP levels are high. Molecules targeting the allosteric site in the inactive kinase conformation (type II inhibitors) provide an alternative for developing selective inhibitors that are physiologically active. By applying a rational design approach using a constrained amino-triazole scaffold predicted to stabilize kinases in the inactive state, we generated a series of selective type II inhibitors of PDGFRβ and B-RAF, important targets for pericyte recruitment and endothelial cell survival, respectively. These molecules were designed in silico and screened for antivascular activity in both cell-based models and a Tg(fli1-EGFP) zebrafish embryogenesis model. Dual inhibition of PDGFRβ and B-RAF cellular signaling demonstrated synergistic antiangiogenic activity in both zebrafish and murine models of angiogenesis, and a combination of previously characterized PDGFRβ and RAF inhibitors validated the synergy. Our lead compound was selected as an orally active molecule with favorable pharmacokinetic properties which demonstrated target inhibition in vivo leading to suppression of murine orthotopic tumors in both the kidney and pancreas.</abstract><pub>National Academy of Sciences</pub><pmid>20154271</pmid><doi>10.1073/pnas.0909299107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (9), p.4299-4304 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_107_9_4299 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Biological Sciences Blood vessels Cancer Embryos Endothelial cells Kidney cells Mice Molecules Phosphorylation Physical Sciences Tumors |
title | Disruption of angiogenesis and tumor growth with an orally active drug that stabilizes the inactive state of PDGFRβ/B-RAF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disruption%20of%20angiogenesis%20and%20tumor%20growth%20with%20an%20orally%20active%20drug%20that%20stabilizes%20the%20inactive%20state%20of%20PDGFR%CE%B2/B-RAF&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Murphy,%20Eric%20A&rft.date=2010-03-02&rft.volume=107&rft.issue=9&rft.spage=4299&rft.epage=4304&rft.pages=4299-4304&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0909299107&rft_dat=%3Cjstor_pnas_%3E40537119%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20154271&rft_jstor_id=40537119&rfr_iscdi=true |