Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains

Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (7), p.2842-2847
Hauptverfasser: Ogura, Toshihiko, Tong, Kit I, Mio, Kazuhiro, Maruyama, Yuusuke, Kurokawa, Hirofumi, Sato, Chikara, Yamamoto, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2847
container_issue 7
container_start_page 2842
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Ogura, Toshihiko
Tong, Kit I
Mio, Kazuhiro
Maruyama, Yuusuke
Kurokawa, Hirofumi
Sato, Chikara
Yamamoto, Masayuki
description Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under unstressed conditions Keap1 binds Nrf2 and results in rapid degradation of Nrf2 through the proteasome pathway. In contrast, upon exposure to oxidative and electrophilic stress, reactive cysteine residues in intervening region (IVR) and Broad complex, Tramtrack, and Bric-à-Brac domains of Keap1 are modified by electrophiles. This modification prevents Nrf2 from rapid degradation and induces Nrf2 activity by repression of Keap1. Here we report the structure of mouse Keap1 homodimer by single particle electron microscopy. Three-dimensional reconstruction at 24-Å resolution revealed two large spheres attached by short linker arms to the sides of a small forked-stem structure, resembling a cherry-bob. Each sphere has a tunnel corresponding to the central hole of the β-propeller domain, as determined by x-ray crystallography. The IVR domain appears to surround the core of the β-propeller domain. The unexpected proximity of IVR to the β-propeller domain suggests that any distortions generated during modification of reactive cysteine residues in the IVR domain may send a derepression signal to the β-propeller domain and thereby stabilize Nrf2. This study thus provides a structural basis for the two-site binding and hinge-latch model of stress sensing by the Nrf2-Keap1 system.
doi_str_mv 10.1073/pnas.0914036107
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_7_2842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40536779</jstor_id><sourcerecordid>40536779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-fa89407b7ab3b03e26254508bef0db3c11b25961c697d52eff1f567f3689fd673</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEokvhzAmwuHBpWjuOP3JBQiu-RCUO0LPlJONdL4md2k6r_oH-7jrasi2crPE882reeYviNcGnBAt6NjkdT3FDakx5_nhSrEiuSl43-GmxwrgSpayr-qh4EeMOY9wwiZ8XRxUmlIqarorbH6AngmxEGhkf_kBfxgQj6u0IAcUU5i7NAdC1TVuUrj0adNgAitMWAkQErht8tG6D0haQdQnCFbhcn6Dez-0AaDPcdNYBCjCBTidIux6ty8yN1ukhU6O2Lr4snhk9RHh1_x4XF18-_15_K89_fv2-_nRedrWUqTRaNjUWrdAtbTGFilesZli2YHDf0o6QtmINJx1vRM8qMIYYxoWhXDam54IeFx_3utPcjtB34FLQg5qCHXW4UV5b9W_H2a3a-CtVyeXEVRb4cC8Q_OUMManRxg6GQTvwc1Qi31U2DWOZfP8fufNzyJ6jWs5fMcl4hs72UBd8jAHMYRWC1ZKwWhJWDwnnibePHRz4v5E-ApbJBzmhxOJisfBmD-xi8uFA1JhRLkST--_2faO90ptgo7r4tchjIjFjXNI7PD7A6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201325856</pqid></control><display><type>article</type><title>Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Ogura, Toshihiko ; Tong, Kit I ; Mio, Kazuhiro ; Maruyama, Yuusuke ; Kurokawa, Hirofumi ; Sato, Chikara ; Yamamoto, Masayuki</creator><creatorcontrib>Ogura, Toshihiko ; Tong, Kit I ; Mio, Kazuhiro ; Maruyama, Yuusuke ; Kurokawa, Hirofumi ; Sato, Chikara ; Yamamoto, Masayuki</creatorcontrib><description>Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under unstressed conditions Keap1 binds Nrf2 and results in rapid degradation of Nrf2 through the proteasome pathway. In contrast, upon exposure to oxidative and electrophilic stress, reactive cysteine residues in intervening region (IVR) and Broad complex, Tramtrack, and Bric-à-Brac domains of Keap1 are modified by electrophiles. This modification prevents Nrf2 from rapid degradation and induces Nrf2 activity by repression of Keap1. Here we report the structure of mouse Keap1 homodimer by single particle electron microscopy. Three-dimensional reconstruction at 24-Å resolution revealed two large spheres attached by short linker arms to the sides of a small forked-stem structure, resembling a cherry-bob. Each sphere has a tunnel corresponding to the central hole of the β-propeller domain, as determined by x-ray crystallography. The IVR domain appears to surround the core of the β-propeller domain. The unexpected proximity of IVR to the β-propeller domain suggests that any distortions generated during modification of reactive cysteine residues in the IVR domain may send a derepression signal to the β-propeller domain and thereby stabilize Nrf2. This study thus provides a structural basis for the two-site binding and hinge-latch model of stress sensing by the Nrf2-Keap1 system.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914036107</identifier><identifier>PMID: 20133743</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adaptor Proteins, Signal Transducing - chemistry ; Adaptor Proteins, Signal Transducing - metabolism ; Amino acids ; Animals ; Antibodies ; Binding sites ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Cytoskeletal Proteins - chemistry ; Cytoskeletal Proteins - metabolism ; Cytoskeletal Proteins - ultrastructure ; Density ; Dimerization ; Dimers ; Enzymes ; Gene expression ; Image analysis ; Kelch-Like ECH-Associated Protein 1 ; Mice ; Microscopy, Electron, Transmission ; Models, Molecular ; Molecular structure ; Molecules ; NF-E2-Related Factor 2 - metabolism ; Oxidative stress ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary - genetics ; Protein Structure, Tertiary - physiology ; Proteins ; Tunnels</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.2842-2847</ispartof><rights>Copyright National Academy of Sciences Feb 16, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-fa89407b7ab3b03e26254508bef0db3c11b25961c697d52eff1f567f3689fd673</citedby><cites>FETCH-LOGICAL-c488t-fa89407b7ab3b03e26254508bef0db3c11b25961c697d52eff1f567f3689fd673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40536779$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40536779$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20133743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogura, Toshihiko</creatorcontrib><creatorcontrib>Tong, Kit I</creatorcontrib><creatorcontrib>Mio, Kazuhiro</creatorcontrib><creatorcontrib>Maruyama, Yuusuke</creatorcontrib><creatorcontrib>Kurokawa, Hirofumi</creatorcontrib><creatorcontrib>Sato, Chikara</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><title>Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under unstressed conditions Keap1 binds Nrf2 and results in rapid degradation of Nrf2 through the proteasome pathway. In contrast, upon exposure to oxidative and electrophilic stress, reactive cysteine residues in intervening region (IVR) and Broad complex, Tramtrack, and Bric-à-Brac domains of Keap1 are modified by electrophiles. This modification prevents Nrf2 from rapid degradation and induces Nrf2 activity by repression of Keap1. Here we report the structure of mouse Keap1 homodimer by single particle electron microscopy. Three-dimensional reconstruction at 24-Å resolution revealed two large spheres attached by short linker arms to the sides of a small forked-stem structure, resembling a cherry-bob. Each sphere has a tunnel corresponding to the central hole of the β-propeller domain, as determined by x-ray crystallography. The IVR domain appears to surround the core of the β-propeller domain. The unexpected proximity of IVR to the β-propeller domain suggests that any distortions generated during modification of reactive cysteine residues in the IVR domain may send a derepression signal to the β-propeller domain and thereby stabilize Nrf2. This study thus provides a structural basis for the two-site binding and hinge-latch model of stress sensing by the Nrf2-Keap1 system.</description><subject>Adaptor Proteins, Signal Transducing - chemistry</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytoskeletal Proteins - chemistry</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeletal Proteins - ultrastructure</subject><subject>Density</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Image analysis</subject><subject>Kelch-Like ECH-Associated Protein 1</subject><subject>Mice</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Oxidative stress</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Proteins</subject><subject>Tunnels</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhiMEokvhzAmwuHBpWjuOP3JBQiu-RCUO0LPlJONdL4md2k6r_oH-7jrasi2crPE882reeYviNcGnBAt6NjkdT3FDakx5_nhSrEiuSl43-GmxwrgSpayr-qh4EeMOY9wwiZ8XRxUmlIqarorbH6AngmxEGhkf_kBfxgQj6u0IAcUU5i7NAdC1TVuUrj0adNgAitMWAkQErht8tG6D0haQdQnCFbhcn6Dez-0AaDPcdNYBCjCBTidIux6ty8yN1ukhU6O2Lr4snhk9RHh1_x4XF18-_15_K89_fv2-_nRedrWUqTRaNjUWrdAtbTGFilesZli2YHDf0o6QtmINJx1vRM8qMIYYxoWhXDam54IeFx_3utPcjtB34FLQg5qCHXW4UV5b9W_H2a3a-CtVyeXEVRb4cC8Q_OUMManRxg6GQTvwc1Qi31U2DWOZfP8fufNzyJ6jWs5fMcl4hs72UBd8jAHMYRWC1ZKwWhJWDwnnibePHRz4v5E-ApbJBzmhxOJisfBmD-xi8uFA1JhRLkST--_2faO90ptgo7r4tchjIjFjXNI7PD7A6w</recordid><startdate>20100216</startdate><enddate>20100216</enddate><creator>Ogura, Toshihiko</creator><creator>Tong, Kit I</creator><creator>Mio, Kazuhiro</creator><creator>Maruyama, Yuusuke</creator><creator>Kurokawa, Hirofumi</creator><creator>Sato, Chikara</creator><creator>Yamamoto, Masayuki</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100216</creationdate><title>Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains</title><author>Ogura, Toshihiko ; Tong, Kit I ; Mio, Kazuhiro ; Maruyama, Yuusuke ; Kurokawa, Hirofumi ; Sato, Chikara ; Yamamoto, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-fa89407b7ab3b03e26254508bef0db3c11b25961c697d52eff1f567f3689fd673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptor Proteins, Signal Transducing - chemistry</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytoskeletal Proteins - chemistry</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeletal Proteins - ultrastructure</topic><topic>Density</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Image analysis</topic><topic>Kelch-Like ECH-Associated Protein 1</topic><topic>Mice</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Oxidative stress</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Proteins</topic><topic>Tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogura, Toshihiko</creatorcontrib><creatorcontrib>Tong, Kit I</creatorcontrib><creatorcontrib>Mio, Kazuhiro</creatorcontrib><creatorcontrib>Maruyama, Yuusuke</creatorcontrib><creatorcontrib>Kurokawa, Hirofumi</creatorcontrib><creatorcontrib>Sato, Chikara</creatorcontrib><creatorcontrib>Yamamoto, Masayuki</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogura, Toshihiko</au><au>Tong, Kit I</au><au>Mio, Kazuhiro</au><au>Maruyama, Yuusuke</au><au>Kurokawa, Hirofumi</au><au>Sato, Chikara</au><au>Yamamoto, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-02-16</date><risdate>2010</risdate><volume>107</volume><issue>7</issue><spage>2842</spage><epage>2847</epage><pages>2842-2847</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Keap1 is a substrate adaptor of a Cullin 3-based E3 ubiquitin ligase complex that recognizes Nrf2, and also acts as a cellular sensor for xenobiotics and oxidative stresses. Nrf2 is a transcriptional factor regulating the expression of cytoprotective enzyme genes in response to such stresses. Under unstressed conditions Keap1 binds Nrf2 and results in rapid degradation of Nrf2 through the proteasome pathway. In contrast, upon exposure to oxidative and electrophilic stress, reactive cysteine residues in intervening region (IVR) and Broad complex, Tramtrack, and Bric-à-Brac domains of Keap1 are modified by electrophiles. This modification prevents Nrf2 from rapid degradation and induces Nrf2 activity by repression of Keap1. Here we report the structure of mouse Keap1 homodimer by single particle electron microscopy. Three-dimensional reconstruction at 24-Å resolution revealed two large spheres attached by short linker arms to the sides of a small forked-stem structure, resembling a cherry-bob. Each sphere has a tunnel corresponding to the central hole of the β-propeller domain, as determined by x-ray crystallography. The IVR domain appears to surround the core of the β-propeller domain. The unexpected proximity of IVR to the β-propeller domain suggests that any distortions generated during modification of reactive cysteine residues in the IVR domain may send a derepression signal to the β-propeller domain and thereby stabilize Nrf2. This study thus provides a structural basis for the two-site binding and hinge-latch model of stress sensing by the Nrf2-Keap1 system.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20133743</pmid><doi>10.1073/pnas.0914036107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-02, Vol.107 (7), p.2842-2847
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_107_7_2842
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Adaptor Proteins, Signal Transducing - chemistry
Adaptor Proteins, Signal Transducing - metabolism
Amino acids
Animals
Antibodies
Binding sites
Biological Sciences
Crystal structure
Crystallography, X-Ray
Cytoskeletal Proteins - chemistry
Cytoskeletal Proteins - metabolism
Cytoskeletal Proteins - ultrastructure
Density
Dimerization
Dimers
Enzymes
Gene expression
Image analysis
Kelch-Like ECH-Associated Protein 1
Mice
Microscopy, Electron, Transmission
Models, Molecular
Molecular structure
Molecules
NF-E2-Related Factor 2 - metabolism
Oxidative stress
Protein Binding
Protein Conformation
Protein Structure, Tertiary - genetics
Protein Structure, Tertiary - physiology
Proteins
Tunnels
title Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keap1%20is%20a%20forked-stem%20dimer%20structure%20with%20two%20large%20spheres%20enclosing%20the%20intervening,%20double%20glycine%20repeat,%20and%20C-terminal%20domains&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ogura,%20Toshihiko&rft.date=2010-02-16&rft.volume=107&rft.issue=7&rft.spage=2842&rft.epage=2847&rft.pages=2842-2847&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914036107&rft_dat=%3Cjstor_pnas_%3E40536779%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201325856&rft_id=info:pmid/20133743&rft_jstor_id=40536779&rfr_iscdi=true