Phospholipid bilayers are viscoelastic

Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19146-19150
Hauptverfasser: Harland, Christopher W., Bradley, Miranda J., Parthasarathy, Raghuveer, Weitz, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19150
container_issue 45
container_start_page 19146
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Harland, Christopher W.
Bradley, Miranda J.
Parthasarathy, Raghuveer
Weitz, David A.
description Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.
doi_str_mv 10.1073/pnas.1010700107
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_45_19146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748641</jstor_id><sourcerecordid>25748641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotlbPnpTFg55W887mIkjxBQU96Dkk2dSmbDfrZrfQ_96U1vq4zAzMj4_vmwHgFMFrBAW5aWod05RmuC57YIigRDmnEu6DIYRY5AXFdACOYpxDCCUr4CEYYCgFlYQOweXrLMRmFirf-DIzvtIr18ZMty5b-miDq3TsvD0GB1NdRXey7SPw_nD_Nn7KJy-Pz-O7SW5JwbrcyoJJjYQxyY6GWhtjXYFZKaTmxEgkrMNTYmBpJeUQo9JaYg3DltAp0wUZgduNbtObhSutq7tWV6pp_UK3KxW0V383tZ-pj7BUWKacmCSBq61AGz57Fzu1SDFcVenahT4qwQkVCKE1efGPnIe-rVO6NcQ5Q0Ik6Py3n52R7wMmINsC6RO7dXqFokwhiShPyNkGmccutD8STNCCU0S-AOpEhvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763665177</pqid></control><display><type>article</type><title>Phospholipid bilayers are viscoelastic</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</creator><creatorcontrib>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</creatorcontrib><description>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010700107</identifier><identifier>PMID: 20974934</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell membranes ; Elasticity ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membranes ; Moduli of elasticity ; Molecules ; P branes ; Particle trajectories ; Phase Transition ; Phase transitions ; Phospholipids ; Phospholipids - chemistry ; Physical Sciences ; Rheology ; Viscoelasticity ; Viscosity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19146-19150</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748641$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748641$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harland, Christopher W.</creatorcontrib><creatorcontrib>Bradley, Miranda J.</creatorcontrib><creatorcontrib>Parthasarathy, Raghuveer</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><title>Phospholipid bilayers are viscoelastic</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</description><subject>Biological Sciences</subject><subject>Cell membranes</subject><subject>Elasticity</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Moduli of elasticity</subject><subject>Molecules</subject><subject>P branes</subject><subject>Particle trajectories</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Physical Sciences</subject><subject>Rheology</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMotlbPnpTFg55W887mIkjxBQU96Dkk2dSmbDfrZrfQ_96U1vq4zAzMj4_vmwHgFMFrBAW5aWod05RmuC57YIigRDmnEu6DIYRY5AXFdACOYpxDCCUr4CEYYCgFlYQOweXrLMRmFirf-DIzvtIr18ZMty5b-miDq3TsvD0GB1NdRXey7SPw_nD_Nn7KJy-Pz-O7SW5JwbrcyoJJjYQxyY6GWhtjXYFZKaTmxEgkrMNTYmBpJeUQo9JaYg3DltAp0wUZgduNbtObhSutq7tWV6pp_UK3KxW0V383tZ-pj7BUWKacmCSBq61AGz57Fzu1SDFcVenahT4qwQkVCKE1efGPnIe-rVO6NcQ5Q0Ik6Py3n52R7wMmINsC6RO7dXqFokwhiShPyNkGmccutD8STNCCU0S-AOpEhvY</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Harland, Christopher W.</creator><creator>Bradley, Miranda J.</creator><creator>Parthasarathy, Raghuveer</creator><creator>Weitz, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Phospholipid bilayers are viscoelastic</title><author>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological Sciences</topic><topic>Cell membranes</topic><topic>Elasticity</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Moduli of elasticity</topic><topic>Molecules</topic><topic>P branes</topic><topic>Particle trajectories</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Physical Sciences</topic><topic>Rheology</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harland, Christopher W.</creatorcontrib><creatorcontrib>Bradley, Miranda J.</creatorcontrib><creatorcontrib>Parthasarathy, Raghuveer</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harland, Christopher W.</au><au>Bradley, Miranda J.</au><au>Parthasarathy, Raghuveer</au><au>Weitz, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid bilayers are viscoelastic</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19146</spage><epage>19150</epage><pages>19146-19150</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974934</pmid><doi>10.1073/pnas.1010700107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19146-19150
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_107_45_19146
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Cell membranes
Elasticity
Lipid bilayers
Lipid Bilayers - chemistry
Lipids
Membrane Fluidity
Membranes
Moduli of elasticity
Molecules
P branes
Particle trajectories
Phase Transition
Phase transitions
Phospholipids
Phospholipids - chemistry
Physical Sciences
Rheology
Viscoelasticity
Viscosity
title Phospholipid bilayers are viscoelastic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20bilayers%20are%20viscoelastic&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Harland,%20Christopher%20W.&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19146&rft.epage=19150&rft.pages=19146-19150&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010700107&rft_dat=%3Cjstor_pnas_%3E25748641%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763665177&rft_id=info:pmid/20974934&rft_jstor_id=25748641&rfr_iscdi=true