Phospholipid bilayers are viscoelastic
Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimens...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (45), p.19146-19150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19150 |
---|---|
container_issue | 45 |
container_start_page | 19146 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Harland, Christopher W. Bradley, Miranda J. Parthasarathy, Raghuveer Weitz, David A. |
description | Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments. |
doi_str_mv | 10.1073/pnas.1010700107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_45_19146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748641</jstor_id><sourcerecordid>25748641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</originalsourceid><addsrcrecordid>eNpdkctLAzEQxoMotlbPnpTFg55W887mIkjxBQU96Dkk2dSmbDfrZrfQ_96U1vq4zAzMj4_vmwHgFMFrBAW5aWod05RmuC57YIigRDmnEu6DIYRY5AXFdACOYpxDCCUr4CEYYCgFlYQOweXrLMRmFirf-DIzvtIr18ZMty5b-miDq3TsvD0GB1NdRXey7SPw_nD_Nn7KJy-Pz-O7SW5JwbrcyoJJjYQxyY6GWhtjXYFZKaTmxEgkrMNTYmBpJeUQo9JaYg3DltAp0wUZgduNbtObhSutq7tWV6pp_UK3KxW0V383tZ-pj7BUWKacmCSBq61AGz57Fzu1SDFcVenahT4qwQkVCKE1efGPnIe-rVO6NcQ5Q0Ik6Py3n52R7wMmINsC6RO7dXqFokwhiShPyNkGmccutD8STNCCU0S-AOpEhvY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>763665177</pqid></control><display><type>article</type><title>Phospholipid bilayers are viscoelastic</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</creator><creatorcontrib>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</creatorcontrib><description>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1010700107</identifier><identifier>PMID: 20974934</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell membranes ; Elasticity ; Lipid bilayers ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membranes ; Moduli of elasticity ; Molecules ; P branes ; Particle trajectories ; Phase Transition ; Phase transitions ; Phospholipids ; Phospholipids - chemistry ; Physical Sciences ; Rheology ; Viscoelasticity ; Viscosity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19146-19150</ispartof><rights>Copyright National Academy of Sciences Nov 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748641$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748641$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27911,27912,53778,53780,58004,58237</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20974934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harland, Christopher W.</creatorcontrib><creatorcontrib>Bradley, Miranda J.</creatorcontrib><creatorcontrib>Parthasarathy, Raghuveer</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><title>Phospholipid bilayers are viscoelastic</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</description><subject>Biological Sciences</subject><subject>Cell membranes</subject><subject>Elasticity</subject><subject>Lipid bilayers</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Moduli of elasticity</subject><subject>Molecules</subject><subject>P branes</subject><subject>Particle trajectories</subject><subject>Phase Transition</subject><subject>Phase transitions</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Physical Sciences</subject><subject>Rheology</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLAzEQxoMotlbPnpTFg55W887mIkjxBQU96Dkk2dSmbDfrZrfQ_96U1vq4zAzMj4_vmwHgFMFrBAW5aWod05RmuC57YIigRDmnEu6DIYRY5AXFdACOYpxDCCUr4CEYYCgFlYQOweXrLMRmFirf-DIzvtIr18ZMty5b-miDq3TsvD0GB1NdRXey7SPw_nD_Nn7KJy-Pz-O7SW5JwbrcyoJJjYQxyY6GWhtjXYFZKaTmxEgkrMNTYmBpJeUQo9JaYg3DltAp0wUZgduNbtObhSutq7tWV6pp_UK3KxW0V383tZ-pj7BUWKacmCSBq61AGz57Fzu1SDFcVenahT4qwQkVCKE1efGPnIe-rVO6NcQ5Q0Ik6Py3n52R7wMmINsC6RO7dXqFokwhiShPyNkGmccutD8STNCCU0S-AOpEhvY</recordid><startdate>20101109</startdate><enddate>20101109</enddate><creator>Harland, Christopher W.</creator><creator>Bradley, Miranda J.</creator><creator>Parthasarathy, Raghuveer</creator><creator>Weitz, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101109</creationdate><title>Phospholipid bilayers are viscoelastic</title><author>Harland, Christopher W. ; Bradley, Miranda J. ; Parthasarathy, Raghuveer ; Weitz, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-c9859a17bb001a0aabbce825d79a63b917ce2f3b0dc946021dcc3cb52c34f5a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological Sciences</topic><topic>Cell membranes</topic><topic>Elasticity</topic><topic>Lipid bilayers</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Moduli of elasticity</topic><topic>Molecules</topic><topic>P branes</topic><topic>Particle trajectories</topic><topic>Phase Transition</topic><topic>Phase transitions</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Physical Sciences</topic><topic>Rheology</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harland, Christopher W.</creatorcontrib><creatorcontrib>Bradley, Miranda J.</creatorcontrib><creatorcontrib>Parthasarathy, Raghuveer</creatorcontrib><creatorcontrib>Weitz, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harland, Christopher W.</au><au>Bradley, Miranda J.</au><au>Parthasarathy, Raghuveer</au><au>Weitz, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospholipid bilayers are viscoelastic</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-09</date><risdate>2010</risdate><volume>107</volume><issue>45</issue><spage>19146</spage><epage>19150</epage><pages>19146-19150</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lipid bilayers provide the structural framework for cellular membranes, and their character as two-dimensional fluids enables the mobility of membrane macromolecules. Though the existence of membrane fluidity is well established, the nature of this fluidity remains poorly characterized. Three-dimensional fluids as diverse as chocolates and cytoskeletal networks show a rich variety of Newtonian and non-Newtonian dynamics that have been illuminated by contemporary rheological techniques. Applying particletracking microrheology to freestanding phospholipid bilayers, we find that the membranes are not simply viscous but rather exhibit viscoelasticity, with an elastic modulus that dominates the response above a characteristic frequency that diverges at the fluid–gel (L α − L β ) phase-transition temperature. These findings fundamentally alter our picture of the nature of lipid bilayers and the mechanics of membrane environments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20974934</pmid><doi>10.1073/pnas.1010700107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (45), p.19146-19150 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_107_45_19146 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Cell membranes Elasticity Lipid bilayers Lipid Bilayers - chemistry Lipids Membrane Fluidity Membranes Moduli of elasticity Molecules P branes Particle trajectories Phase Transition Phase transitions Phospholipids Phospholipids - chemistry Physical Sciences Rheology Viscoelasticity Viscosity |
title | Phospholipid bilayers are viscoelastic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospholipid%20bilayers%20are%20viscoelastic&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Harland,%20Christopher%20W.&rft.date=2010-11-09&rft.volume=107&rft.issue=45&rft.spage=19146&rft.epage=19150&rft.pages=19146-19150&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1010700107&rft_dat=%3Cjstor_pnas_%3E25748641%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=763665177&rft_id=info:pmid/20974934&rft_jstor_id=25748641&rfr_iscdi=true |