Quantum computing with defects

Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-05, Vol.107 (19), p.8513-8518
Hauptverfasser: Weber, J.R, Koehl, W.F, Varley, J.B, Janotti, A, Buckley, B.B, Van de Walle, C.G, Awschalom, D.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8518
container_issue 19
container_start_page 8513
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Weber, J.R
Koehl, W.F
Varley, J.B
Janotti, A
Buckley, B.B
Van de Walle, C.G
Awschalom, D.D
description Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
doi_str_mv 10.1073/pnas.1003052107
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_19_8513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25681448</jstor_id><sourcerecordid>25681448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4MoOqdnT-rw4qn65qtJLoIMv0AQ0Z1D2qZbx9rMpFX8703ZdOopIXneh9_7Q-gIwwUGQS-XjQnxBhQ4iQ9baIBB4SRlCrbRAICIRDLC9tB-CHMAUFzCLtojwIBhxQfo5LkzTdvVo9zVy66tmunoo2pno8KWNm_DAdopzSLYw_U5RJPbm9fxffL4dPcwvn5MciZVmxjgJsNG5apIjRDWZFxKKouccloaLoBmYMuScMUiaBmnuBAA3GaYg2CEDtHVyrvsstoWuW1abxZ66ava-E_tTKX__jTVTE_duyZSKhr3H6LztcC7t86GVtdVyO1iYRrruqAFpSAFpzSSZ__Iuet8E7fTBHDMkqa97nIF5d6F4G35EwWD7pvXffN603ycOPm9wQ__XXUETtdAP7nRCY2Vlhz3yY5XxDy0zm8MPJWYMbkxlMZpM_VV0JOXmJkClgwTQukXm5qayg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423660</pqid></control><display><type>article</type><title>Quantum computing with defects</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</creator><creatorcontrib>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</creatorcontrib><description>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003052107</identifier><identifier>PMID: 20404195</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anions ; Atoms ; Defects ; Electronic structure ; Electronics ; Electrons ; Energy ; Impurities ; Nitrogen ; Optical transition ; Orbitals ; Physical properties ; Physical Sciences ; Quantum computers ; Quantum theory ; Semiconductors ; Silicon carbide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (19), p.8513-8518</ispartof><rights>Copyright National Academy of Sciences May 11, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</citedby><cites>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25681448$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25681448$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20404195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, J.R</creatorcontrib><creatorcontrib>Koehl, W.F</creatorcontrib><creatorcontrib>Varley, J.B</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Buckley, B.B</creatorcontrib><creatorcontrib>Van de Walle, C.G</creatorcontrib><creatorcontrib>Awschalom, D.D</creatorcontrib><title>Quantum computing with defects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</description><subject>Anions</subject><subject>Atoms</subject><subject>Defects</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Impurities</subject><subject>Nitrogen</subject><subject>Optical transition</subject><subject>Orbitals</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Quantum computers</subject><subject>Quantum theory</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYh4MoOqdnT-rw4qn65qtJLoIMv0AQ0Z1D2qZbx9rMpFX8703ZdOopIXneh9_7Q-gIwwUGQS-XjQnxBhQ4iQ9baIBB4SRlCrbRAICIRDLC9tB-CHMAUFzCLtojwIBhxQfo5LkzTdvVo9zVy66tmunoo2pno8KWNm_DAdopzSLYw_U5RJPbm9fxffL4dPcwvn5MciZVmxjgJsNG5apIjRDWZFxKKouccloaLoBmYMuScMUiaBmnuBAA3GaYg2CEDtHVyrvsstoWuW1abxZ66ava-E_tTKX__jTVTE_duyZSKhr3H6LztcC7t86GVtdVyO1iYRrruqAFpSAFpzSSZ__Iuet8E7fTBHDMkqa97nIF5d6F4G35EwWD7pvXffN603ycOPm9wQ__XXUETtdAP7nRCY2Vlhz3yY5XxDy0zm8MPJWYMbkxlMZpM_VV0JOXmJkClgwTQukXm5qayg</recordid><startdate>20100511</startdate><enddate>20100511</enddate><creator>Weber, J.R</creator><creator>Koehl, W.F</creator><creator>Varley, J.B</creator><creator>Janotti, A</creator><creator>Buckley, B.B</creator><creator>Van de Walle, C.G</creator><creator>Awschalom, D.D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100511</creationdate><title>Quantum computing with defects</title><author>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anions</topic><topic>Atoms</topic><topic>Defects</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Impurities</topic><topic>Nitrogen</topic><topic>Optical transition</topic><topic>Orbitals</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Quantum computers</topic><topic>Quantum theory</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, J.R</creatorcontrib><creatorcontrib>Koehl, W.F</creatorcontrib><creatorcontrib>Varley, J.B</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Buckley, B.B</creatorcontrib><creatorcontrib>Van de Walle, C.G</creatorcontrib><creatorcontrib>Awschalom, D.D</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, J.R</au><au>Koehl, W.F</au><au>Varley, J.B</au><au>Janotti, A</au><au>Buckley, B.B</au><au>Van de Walle, C.G</au><au>Awschalom, D.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum computing with defects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-05-11</date><risdate>2010</risdate><volume>107</volume><issue>19</issue><spage>8513</spage><epage>8518</epage><pages>8513-8518</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20404195</pmid><doi>10.1073/pnas.1003052107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (19), p.8513-8518
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_107_19_8513
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Anions
Atoms
Defects
Electronic structure
Electronics
Electrons
Energy
Impurities
Nitrogen
Optical transition
Orbitals
Physical properties
Physical Sciences
Quantum computers
Quantum theory
Semiconductors
Silicon carbide
title Quantum computing with defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20computing%20with%20defects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Weber,%20J.R&rft.date=2010-05-11&rft.volume=107&rft.issue=19&rft.spage=8513&rft.epage=8518&rft.pages=8513-8518&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003052107&rft_dat=%3Cjstor_pnas_%3E25681448%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201423660&rft_id=info:pmid/20404195&rft_jstor_id=25681448&rfr_iscdi=true