Quantum computing with defects
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-05, Vol.107 (19), p.8513-8518 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8518 |
---|---|
container_issue | 19 |
container_start_page | 8513 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Weber, J.R Koehl, W.F Varley, J.B Janotti, A Buckley, B.B Van de Walle, C.G Awschalom, D.D |
description | Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors. |
doi_str_mv | 10.1073/pnas.1003052107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_19_8513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25681448</jstor_id><sourcerecordid>25681448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4MoOqdnT-rw4qn65qtJLoIMv0AQ0Z1D2qZbx9rMpFX8703ZdOopIXneh9_7Q-gIwwUGQS-XjQnxBhQ4iQ9baIBB4SRlCrbRAICIRDLC9tB-CHMAUFzCLtojwIBhxQfo5LkzTdvVo9zVy66tmunoo2pno8KWNm_DAdopzSLYw_U5RJPbm9fxffL4dPcwvn5MciZVmxjgJsNG5apIjRDWZFxKKouccloaLoBmYMuScMUiaBmnuBAA3GaYg2CEDtHVyrvsstoWuW1abxZ66ava-E_tTKX__jTVTE_duyZSKhr3H6LztcC7t86GVtdVyO1iYRrruqAFpSAFpzSSZ__Iuet8E7fTBHDMkqa97nIF5d6F4G35EwWD7pvXffN603ycOPm9wQ__XXUETtdAP7nRCY2Vlhz3yY5XxDy0zm8MPJWYMbkxlMZpM_VV0JOXmJkClgwTQukXm5qayg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423660</pqid></control><display><type>article</type><title>Quantum computing with defects</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</creator><creatorcontrib>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</creatorcontrib><description>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1003052107</identifier><identifier>PMID: 20404195</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anions ; Atoms ; Defects ; Electronic structure ; Electronics ; Electrons ; Energy ; Impurities ; Nitrogen ; Optical transition ; Orbitals ; Physical properties ; Physical Sciences ; Quantum computers ; Quantum theory ; Semiconductors ; Silicon carbide</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (19), p.8513-8518</ispartof><rights>Copyright National Academy of Sciences May 11, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</citedby><cites>FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25681448$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25681448$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20404195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, J.R</creatorcontrib><creatorcontrib>Koehl, W.F</creatorcontrib><creatorcontrib>Varley, J.B</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Buckley, B.B</creatorcontrib><creatorcontrib>Van de Walle, C.G</creatorcontrib><creatorcontrib>Awschalom, D.D</creatorcontrib><title>Quantum computing with defects</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</description><subject>Anions</subject><subject>Atoms</subject><subject>Defects</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Impurities</subject><subject>Nitrogen</subject><subject>Optical transition</subject><subject>Orbitals</subject><subject>Physical properties</subject><subject>Physical Sciences</subject><subject>Quantum computers</subject><subject>Quantum theory</subject><subject>Semiconductors</subject><subject>Silicon carbide</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYh4MoOqdnT-rw4qn65qtJLoIMv0AQ0Z1D2qZbx9rMpFX8703ZdOopIXneh9_7Q-gIwwUGQS-XjQnxBhQ4iQ9baIBB4SRlCrbRAICIRDLC9tB-CHMAUFzCLtojwIBhxQfo5LkzTdvVo9zVy66tmunoo2pno8KWNm_DAdopzSLYw_U5RJPbm9fxffL4dPcwvn5MciZVmxjgJsNG5apIjRDWZFxKKouccloaLoBmYMuScMUiaBmnuBAA3GaYg2CEDtHVyrvsstoWuW1abxZ66ava-E_tTKX__jTVTE_duyZSKhr3H6LztcC7t86GVtdVyO1iYRrruqAFpSAFpzSSZ__Iuet8E7fTBHDMkqa97nIF5d6F4G35EwWD7pvXffN603ycOPm9wQ__XXUETtdAP7nRCY2Vlhz3yY5XxDy0zm8MPJWYMbkxlMZpM_VV0JOXmJkClgwTQukXm5qayg</recordid><startdate>20100511</startdate><enddate>20100511</enddate><creator>Weber, J.R</creator><creator>Koehl, W.F</creator><creator>Varley, J.B</creator><creator>Janotti, A</creator><creator>Buckley, B.B</creator><creator>Van de Walle, C.G</creator><creator>Awschalom, D.D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100511</creationdate><title>Quantum computing with defects</title><author>Weber, J.R ; Koehl, W.F ; Varley, J.B ; Janotti, A ; Buckley, B.B ; Van de Walle, C.G ; Awschalom, D.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-a05ab1a9c9d6a77eab58838dc353fa5703b0eff25945abe4531d7005eb1507423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anions</topic><topic>Atoms</topic><topic>Defects</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Impurities</topic><topic>Nitrogen</topic><topic>Optical transition</topic><topic>Orbitals</topic><topic>Physical properties</topic><topic>Physical Sciences</topic><topic>Quantum computers</topic><topic>Quantum theory</topic><topic>Semiconductors</topic><topic>Silicon carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, J.R</creatorcontrib><creatorcontrib>Koehl, W.F</creatorcontrib><creatorcontrib>Varley, J.B</creatorcontrib><creatorcontrib>Janotti, A</creatorcontrib><creatorcontrib>Buckley, B.B</creatorcontrib><creatorcontrib>Van de Walle, C.G</creatorcontrib><creatorcontrib>Awschalom, D.D</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, J.R</au><au>Koehl, W.F</au><au>Varley, J.B</au><au>Janotti, A</au><au>Buckley, B.B</au><au>Van de Walle, C.G</au><au>Awschalom, D.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum computing with defects</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-05-11</date><risdate>2010</risdate><volume>107</volume><issue>19</issue><spage>8513</spage><epage>8518</epage><pages>8513-8518</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV⁻¹) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV⁻¹ center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20404195</pmid><doi>10.1073/pnas.1003052107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (19), p.8513-8518 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_107_19_8513 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Anions Atoms Defects Electronic structure Electronics Electrons Energy Impurities Nitrogen Optical transition Orbitals Physical properties Physical Sciences Quantum computers Quantum theory Semiconductors Silicon carbide |
title | Quantum computing with defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20computing%20with%20defects&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Weber,%20J.R&rft.date=2010-05-11&rft.volume=107&rft.issue=19&rft.spage=8513&rft.epage=8518&rft.pages=8513-8518&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1003052107&rft_dat=%3Cjstor_pnas_%3E25681448%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201423660&rft_id=info:pmid/20404195&rft_jstor_id=25681448&rfr_iscdi=true |