family of thermostable fungal cellulases created by structure-guided recombination

SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (14), p.5610-5615
Hauptverfasser: Heinzelman, Pete, Snow, Christopher D, Wu, Indira, Nguyen, Catherine, Villalobos, Alan, Govindarajan, Sridhar, Minshull, Jeremy, Arnold, Frances H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5615
container_issue 14
container_start_page 5610
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Heinzelman, Pete
Snow, Christopher D
Wu, Indira
Nguyen, Catherine
Villalobos, Alan
Govindarajan, Sridhar
Minshull, Jeremy
Arnold, Frances H
description SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.
doi_str_mv 10.1073/pnas.0901417106
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_106_14_5610_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40454838</jstor_id><sourcerecordid>40454838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</originalsourceid><addsrcrecordid>eNqF0c1r1EAYBvAgil2rZ09q8CBe0r5v5iu5CFK0CoWC2vMwmY9tliSzzkzE_e-dsEvXerCnwOQ3D_O-T1G8RDhDEOR8O6l4Bi0gRYHAHxUrhBYrTlt4XKwAalE1tKYnxbMYNwDQsgaeFifYEhCsqVfFN6fGftiV3pXp1obRx6S6wZZuntZqKLUdhnlQ0cZSB6uSNWW3K2MKs05zsNV67k0-C1b7sesnlXo_PS-eODVE--LwPS1uPn_6cfGlurq-_Hrx8arSHJtUGS4MQ05qq3RHkTnjsCaUaAOKt1prRy2BztWCEOc6wxpmqKmN6hA0EktOiw_73O3cjdZoO6WgBrkN_ajCTnrVy_t_pv5Wrv0vWXMu8mpywLtDQPA_ZxuTHPu4TKwm6-couUBkNbIHYQ1CcAoLfPsP3Pg5THkL2SwdMb6g8z3SwccYrLt7MoJcWpVLq_LYar7x-u9Jj_5QYwbvD2C5eYzjEqlkPOe6eRiS_Z0yffN_msWrvdjE5MMdoUAZbUhzTHDKS7UOfZQ33_N4BJCjyMslfwCTtMsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201417565</pqid></control><display><type>article</type><title>family of thermostable fungal cellulases created by structure-guided recombination</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</creator><creatorcontrib>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</creatorcontrib><description>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901417106</identifier><identifier>PMID: 19307582</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetates ; Adenylate cyclase ; Amino acid sequence ; Amino acids ; Biochemistry ; Biological Sciences ; Biomass ; Catalysis ; cellobiohydrolase ; Cellulase ; cellulases ; Cellulases - genetics ; Cellulose ; cellulose 1,4-beta-cellobiosidase ; Chimeras ; enzymatic hydrolysis ; enzyme activity ; Enzyme Stability ; Enzymes ; Fungal Proteins - genetics ; Gels ; gene expression ; Genes ; genetic engineering ; genetic recombination ; genetically engineered microorganisms ; Genetics ; half life ; Half lives ; heat inactivation ; heat stability ; Hot Temperature ; Humicola ; Humicola insolens ; Hydrolysis ; inactivation ; Inventories ; Libraries ; Mathematical models ; pH effects ; phosphoric acid ; Protein Engineering - methods ; Recombinant Fusion Proteins ; Recombination ; Recombination, Genetic ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Sodium ; Sugars ; Temperature ; Temperature effects ; Thermal stability ; thermophilic fungi ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5610-5615</ispartof><rights>Copyright National Academy of Sciences Apr 7, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</citedby><cites>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40454838$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40454838$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19307582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinzelman, Pete</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><creatorcontrib>Wu, Indira</creatorcontrib><creatorcontrib>Nguyen, Catherine</creatorcontrib><creatorcontrib>Villalobos, Alan</creatorcontrib><creatorcontrib>Govindarajan, Sridhar</creatorcontrib><creatorcontrib>Minshull, Jeremy</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><title>family of thermostable fungal cellulases created by structure-guided recombination</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</description><subject>Acetates</subject><subject>Adenylate cyclase</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Catalysis</subject><subject>cellobiohydrolase</subject><subject>Cellulase</subject><subject>cellulases</subject><subject>Cellulases - genetics</subject><subject>Cellulose</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>Chimeras</subject><subject>enzymatic hydrolysis</subject><subject>enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fungal Proteins - genetics</subject><subject>Gels</subject><subject>gene expression</subject><subject>Genes</subject><subject>genetic engineering</subject><subject>genetic recombination</subject><subject>genetically engineered microorganisms</subject><subject>Genetics</subject><subject>half life</subject><subject>Half lives</subject><subject>heat inactivation</subject><subject>heat stability</subject><subject>Hot Temperature</subject><subject>Humicola</subject><subject>Humicola insolens</subject><subject>Hydrolysis</subject><subject>inactivation</subject><subject>Inventories</subject><subject>Libraries</subject><subject>Mathematical models</subject><subject>pH effects</subject><subject>phosphoric acid</subject><subject>Protein Engineering - methods</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sodium</subject><subject>Sugars</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>thermophilic fungi</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1r1EAYBvAgil2rZ09q8CBe0r5v5iu5CFK0CoWC2vMwmY9tliSzzkzE_e-dsEvXerCnwOQ3D_O-T1G8RDhDEOR8O6l4Bi0gRYHAHxUrhBYrTlt4XKwAalE1tKYnxbMYNwDQsgaeFifYEhCsqVfFN6fGftiV3pXp1obRx6S6wZZuntZqKLUdhnlQ0cZSB6uSNWW3K2MKs05zsNV67k0-C1b7sesnlXo_PS-eODVE--LwPS1uPn_6cfGlurq-_Hrx8arSHJtUGS4MQ05qq3RHkTnjsCaUaAOKt1prRy2BztWCEOc6wxpmqKmN6hA0EktOiw_73O3cjdZoO6WgBrkN_ajCTnrVy_t_pv5Wrv0vWXMu8mpywLtDQPA_ZxuTHPu4TKwm6-couUBkNbIHYQ1CcAoLfPsP3Pg5THkL2SwdMb6g8z3SwccYrLt7MoJcWpVLq_LYar7x-u9Jj_5QYwbvD2C5eYzjEqlkPOe6eRiS_Z0yffN_msWrvdjE5MMdoUAZbUhzTHDKS7UOfZQ33_N4BJCjyMslfwCTtMsM</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Heinzelman, Pete</creator><creator>Snow, Christopher D</creator><creator>Wu, Indira</creator><creator>Nguyen, Catherine</creator><creator>Villalobos, Alan</creator><creator>Govindarajan, Sridhar</creator><creator>Minshull, Jeremy</creator><creator>Arnold, Frances H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090407</creationdate><title>family of thermostable fungal cellulases created by structure-guided recombination</title><author>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetates</topic><topic>Adenylate cyclase</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Catalysis</topic><topic>cellobiohydrolase</topic><topic>Cellulase</topic><topic>cellulases</topic><topic>Cellulases - genetics</topic><topic>Cellulose</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>Chimeras</topic><topic>enzymatic hydrolysis</topic><topic>enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fungal Proteins - genetics</topic><topic>Gels</topic><topic>gene expression</topic><topic>Genes</topic><topic>genetic engineering</topic><topic>genetic recombination</topic><topic>genetically engineered microorganisms</topic><topic>Genetics</topic><topic>half life</topic><topic>Half lives</topic><topic>heat inactivation</topic><topic>heat stability</topic><topic>Hot Temperature</topic><topic>Humicola</topic><topic>Humicola insolens</topic><topic>Hydrolysis</topic><topic>inactivation</topic><topic>Inventories</topic><topic>Libraries</topic><topic>Mathematical models</topic><topic>pH effects</topic><topic>phosphoric acid</topic><topic>Protein Engineering - methods</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sodium</topic><topic>Sugars</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>thermophilic fungi</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinzelman, Pete</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><creatorcontrib>Wu, Indira</creatorcontrib><creatorcontrib>Nguyen, Catherine</creatorcontrib><creatorcontrib>Villalobos, Alan</creatorcontrib><creatorcontrib>Govindarajan, Sridhar</creatorcontrib><creatorcontrib>Minshull, Jeremy</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinzelman, Pete</au><au>Snow, Christopher D</au><au>Wu, Indira</au><au>Nguyen, Catherine</au><au>Villalobos, Alan</au><au>Govindarajan, Sridhar</au><au>Minshull, Jeremy</au><au>Arnold, Frances H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>family of thermostable fungal cellulases created by structure-guided recombination</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>106</volume><issue>14</issue><spage>5610</spage><epage>5615</epage><pages>5610-5615</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19307582</pmid><doi>10.1073/pnas.0901417106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5610-5615
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_106_14_5610_fulltext
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetates
Adenylate cyclase
Amino acid sequence
Amino acids
Biochemistry
Biological Sciences
Biomass
Catalysis
cellobiohydrolase
Cellulase
cellulases
Cellulases - genetics
Cellulose
cellulose 1,4-beta-cellobiosidase
Chimeras
enzymatic hydrolysis
enzyme activity
Enzyme Stability
Enzymes
Fungal Proteins - genetics
Gels
gene expression
Genes
genetic engineering
genetic recombination
genetically engineered microorganisms
Genetics
half life
Half lives
heat inactivation
heat stability
Hot Temperature
Humicola
Humicola insolens
Hydrolysis
inactivation
Inventories
Libraries
Mathematical models
pH effects
phosphoric acid
Protein Engineering - methods
Recombinant Fusion Proteins
Recombination
Recombination, Genetic
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Sodium
Sugars
Temperature
Temperature effects
Thermal stability
thermophilic fungi
Yeast
title family of thermostable fungal cellulases created by structure-guided recombination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=family%20of%20thermostable%20fungal%20cellulases%20created%20by%20structure-guided%20recombination&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heinzelman,%20Pete&rft.date=2009-04-07&rft.volume=106&rft.issue=14&rft.spage=5610&rft.epage=5615&rft.pages=5610-5615&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901417106&rft_dat=%3Cjstor_pnas_%3E40454838%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201417565&rft_id=info:pmid/19307582&rft_jstor_id=40454838&rfr_iscdi=true