family of thermostable fungal cellulases created by structure-guided recombination
SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous ho...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2009-04, Vol.106 (14), p.5610-5615 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5615 |
---|---|
container_issue | 14 |
container_start_page | 5610 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 106 |
creator | Heinzelman, Pete Snow, Christopher D Wu, Indira Nguyen, Catherine Villalobos, Alan Govindarajan, Sridhar Minshull, Jeremy Arnold, Frances H |
description | SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated. |
doi_str_mv | 10.1073/pnas.0901417106 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_106_14_5610_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40454838</jstor_id><sourcerecordid>40454838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</originalsourceid><addsrcrecordid>eNqF0c1r1EAYBvAgil2rZ09q8CBe0r5v5iu5CFK0CoWC2vMwmY9tliSzzkzE_e-dsEvXerCnwOQ3D_O-T1G8RDhDEOR8O6l4Bi0gRYHAHxUrhBYrTlt4XKwAalE1tKYnxbMYNwDQsgaeFifYEhCsqVfFN6fGftiV3pXp1obRx6S6wZZuntZqKLUdhnlQ0cZSB6uSNWW3K2MKs05zsNV67k0-C1b7sesnlXo_PS-eODVE--LwPS1uPn_6cfGlurq-_Hrx8arSHJtUGS4MQ05qq3RHkTnjsCaUaAOKt1prRy2BztWCEOc6wxpmqKmN6hA0EktOiw_73O3cjdZoO6WgBrkN_ajCTnrVy_t_pv5Wrv0vWXMu8mpywLtDQPA_ZxuTHPu4TKwm6-couUBkNbIHYQ1CcAoLfPsP3Pg5THkL2SwdMb6g8z3SwccYrLt7MoJcWpVLq_LYar7x-u9Jj_5QYwbvD2C5eYzjEqlkPOe6eRiS_Z0yffN_msWrvdjE5MMdoUAZbUhzTHDKS7UOfZQ33_N4BJCjyMslfwCTtMsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201417565</pqid></control><display><type>article</type><title>family of thermostable fungal cellulases created by structure-guided recombination</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</creator><creatorcontrib>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</creatorcontrib><description>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0901417106</identifier><identifier>PMID: 19307582</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetates ; Adenylate cyclase ; Amino acid sequence ; Amino acids ; Biochemistry ; Biological Sciences ; Biomass ; Catalysis ; cellobiohydrolase ; Cellulase ; cellulases ; Cellulases - genetics ; Cellulose ; cellulose 1,4-beta-cellobiosidase ; Chimeras ; enzymatic hydrolysis ; enzyme activity ; Enzyme Stability ; Enzymes ; Fungal Proteins - genetics ; Gels ; gene expression ; Genes ; genetic engineering ; genetic recombination ; genetically engineered microorganisms ; Genetics ; half life ; Half lives ; heat inactivation ; heat stability ; Hot Temperature ; Humicola ; Humicola insolens ; Hydrolysis ; inactivation ; Inventories ; Libraries ; Mathematical models ; pH effects ; phosphoric acid ; Protein Engineering - methods ; Recombinant Fusion Proteins ; Recombination ; Recombination, Genetic ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Sodium ; Sugars ; Temperature ; Temperature effects ; Thermal stability ; thermophilic fungi ; Yeast</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5610-5615</ispartof><rights>Copyright National Academy of Sciences Apr 7, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</citedby><cites>FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/14.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40454838$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40454838$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19307582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinzelman, Pete</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><creatorcontrib>Wu, Indira</creatorcontrib><creatorcontrib>Nguyen, Catherine</creatorcontrib><creatorcontrib>Villalobos, Alan</creatorcontrib><creatorcontrib>Govindarajan, Sridhar</creatorcontrib><creatorcontrib>Minshull, Jeremy</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><title>family of thermostable fungal cellulases created by structure-guided recombination</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</description><subject>Acetates</subject><subject>Adenylate cyclase</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biomass</subject><subject>Catalysis</subject><subject>cellobiohydrolase</subject><subject>Cellulase</subject><subject>cellulases</subject><subject>Cellulases - genetics</subject><subject>Cellulose</subject><subject>cellulose 1,4-beta-cellobiosidase</subject><subject>Chimeras</subject><subject>enzymatic hydrolysis</subject><subject>enzyme activity</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fungal Proteins - genetics</subject><subject>Gels</subject><subject>gene expression</subject><subject>Genes</subject><subject>genetic engineering</subject><subject>genetic recombination</subject><subject>genetically engineered microorganisms</subject><subject>Genetics</subject><subject>half life</subject><subject>Half lives</subject><subject>heat inactivation</subject><subject>heat stability</subject><subject>Hot Temperature</subject><subject>Humicola</subject><subject>Humicola insolens</subject><subject>Hydrolysis</subject><subject>inactivation</subject><subject>Inventories</subject><subject>Libraries</subject><subject>Mathematical models</subject><subject>pH effects</subject><subject>phosphoric acid</subject><subject>Protein Engineering - methods</subject><subject>Recombinant Fusion Proteins</subject><subject>Recombination</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sodium</subject><subject>Sugars</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thermal stability</subject><subject>thermophilic fungi</subject><subject>Yeast</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1r1EAYBvAgil2rZ09q8CBe0r5v5iu5CFK0CoWC2vMwmY9tliSzzkzE_e-dsEvXerCnwOQ3D_O-T1G8RDhDEOR8O6l4Bi0gRYHAHxUrhBYrTlt4XKwAalE1tKYnxbMYNwDQsgaeFifYEhCsqVfFN6fGftiV3pXp1obRx6S6wZZuntZqKLUdhnlQ0cZSB6uSNWW3K2MKs05zsNV67k0-C1b7sesnlXo_PS-eODVE--LwPS1uPn_6cfGlurq-_Hrx8arSHJtUGS4MQ05qq3RHkTnjsCaUaAOKt1prRy2BztWCEOc6wxpmqKmN6hA0EktOiw_73O3cjdZoO6WgBrkN_ajCTnrVy_t_pv5Wrv0vWXMu8mpywLtDQPA_ZxuTHPu4TKwm6-couUBkNbIHYQ1CcAoLfPsP3Pg5THkL2SwdMb6g8z3SwccYrLt7MoJcWpVLq_LYar7x-u9Jj_5QYwbvD2C5eYzjEqlkPOe6eRiS_Z0yffN_msWrvdjE5MMdoUAZbUhzTHDKS7UOfZQ33_N4BJCjyMslfwCTtMsM</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Heinzelman, Pete</creator><creator>Snow, Christopher D</creator><creator>Wu, Indira</creator><creator>Nguyen, Catherine</creator><creator>Villalobos, Alan</creator><creator>Govindarajan, Sridhar</creator><creator>Minshull, Jeremy</creator><creator>Arnold, Frances H</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090407</creationdate><title>family of thermostable fungal cellulases created by structure-guided recombination</title><author>Heinzelman, Pete ; Snow, Christopher D ; Wu, Indira ; Nguyen, Catherine ; Villalobos, Alan ; Govindarajan, Sridhar ; Minshull, Jeremy ; Arnold, Frances H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-d67d51632eacb415fdf12343cd0a69cccf4e30bf2733ffbd585d4d2dab10c13e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acetates</topic><topic>Adenylate cyclase</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biomass</topic><topic>Catalysis</topic><topic>cellobiohydrolase</topic><topic>Cellulase</topic><topic>cellulases</topic><topic>Cellulases - genetics</topic><topic>Cellulose</topic><topic>cellulose 1,4-beta-cellobiosidase</topic><topic>Chimeras</topic><topic>enzymatic hydrolysis</topic><topic>enzyme activity</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fungal Proteins - genetics</topic><topic>Gels</topic><topic>gene expression</topic><topic>Genes</topic><topic>genetic engineering</topic><topic>genetic recombination</topic><topic>genetically engineered microorganisms</topic><topic>Genetics</topic><topic>half life</topic><topic>Half lives</topic><topic>heat inactivation</topic><topic>heat stability</topic><topic>Hot Temperature</topic><topic>Humicola</topic><topic>Humicola insolens</topic><topic>Hydrolysis</topic><topic>inactivation</topic><topic>Inventories</topic><topic>Libraries</topic><topic>Mathematical models</topic><topic>pH effects</topic><topic>phosphoric acid</topic><topic>Protein Engineering - methods</topic><topic>Recombinant Fusion Proteins</topic><topic>Recombination</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sodium</topic><topic>Sugars</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thermal stability</topic><topic>thermophilic fungi</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinzelman, Pete</creatorcontrib><creatorcontrib>Snow, Christopher D</creatorcontrib><creatorcontrib>Wu, Indira</creatorcontrib><creatorcontrib>Nguyen, Catherine</creatorcontrib><creatorcontrib>Villalobos, Alan</creatorcontrib><creatorcontrib>Govindarajan, Sridhar</creatorcontrib><creatorcontrib>Minshull, Jeremy</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinzelman, Pete</au><au>Snow, Christopher D</au><au>Wu, Indira</au><au>Nguyen, Catherine</au><au>Villalobos, Alan</au><au>Govindarajan, Sridhar</au><au>Minshull, Jeremy</au><au>Arnold, Frances H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>family of thermostable fungal cellulases created by structure-guided recombination</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>106</volume><issue>14</issue><spage>5610</spage><epage>5615</epage><pages>5610-5615</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 °C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 °C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 °C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19307582</pmid><doi>10.1073/pnas.0901417106</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2009-04, Vol.106 (14), p.5610-5615 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_106_14_5610_fulltext |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acetates Adenylate cyclase Amino acid sequence Amino acids Biochemistry Biological Sciences Biomass Catalysis cellobiohydrolase Cellulase cellulases Cellulases - genetics Cellulose cellulose 1,4-beta-cellobiosidase Chimeras enzymatic hydrolysis enzyme activity Enzyme Stability Enzymes Fungal Proteins - genetics Gels gene expression Genes genetic engineering genetic recombination genetically engineered microorganisms Genetics half life Half lives heat inactivation heat stability Hot Temperature Humicola Humicola insolens Hydrolysis inactivation Inventories Libraries Mathematical models pH effects phosphoric acid Protein Engineering - methods Recombinant Fusion Proteins Recombination Recombination, Genetic Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Sodium Sugars Temperature Temperature effects Thermal stability thermophilic fungi Yeast |
title | family of thermostable fungal cellulases created by structure-guided recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=family%20of%20thermostable%20fungal%20cellulases%20created%20by%20structure-guided%20recombination&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heinzelman,%20Pete&rft.date=2009-04-07&rft.volume=106&rft.issue=14&rft.spage=5610&rft.epage=5615&rft.pages=5610-5615&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0901417106&rft_dat=%3Cjstor_pnas_%3E40454838%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201417565&rft_id=info:pmid/19307582&rft_jstor_id=40454838&rfr_iscdi=true |