Physiological significance of a peripheral tissue circadian clock

Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (39), p.15172-15177
Hauptverfasser: Lamia, Katja A, Storch, Kai-Florian, Weitz, Charles J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15177
container_issue 39
container_start_page 15172
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Lamia, Katja A
Storch, Kai-Florian
Weitz, Charles J
description Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.
doi_str_mv 10.1073/pnas.0806717105
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_105_39_15172_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464379</jstor_id><sourcerecordid>25464379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modls9e1IHD4KHaV9-JxehlFoLBQXtOWQymd2ss5NpMiP2vzfLLt3qpac8-H7el_fNF6E3GE4xSHo2DjafggIhscTAn6EFBo1rwTQ8RwsAImvFCDtCxzmvAUBzBS_REVZSllEs0Pn31X0OsY_L4Gxf5bAcQlfGwfkqdpWtRp_CuPKpiFPIefaVC8nZNtihcn10v16hF53ts3-9f0_Q7ZfLnxdf65tvV9cX5ze140pPNZNtQxRQy6mnRGMpGgus5Z3QnmMgrCWKsq4hTdNg4axrubASOLNcYOU7eoI-73zHudn41vlhKkeZMYWNTfcm2mD-VYawMsv42xBOiQQoBh_3BinezT5PZhOy831vBx_nbIQWhDGNC_jhP3Ad5zSUcIYApgpzxgp0toNcijkn3z1cgsFsuzHbbsyhm7Lx7nGAA78vowCf9sB282DHDdUGcyyJ6ea-n_yfqbDVE2xB3u6QdZ5iemAIZ4JRqYv-fqd3Nhq7TCGb2x_bgFACSlm-7S_ka7Ym</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201381544</pqid></control><display><type>article</type><title>Physiological significance of a peripheral tissue circadian clock</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</creator><creatorcontrib>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</creatorcontrib><description>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0806717105</identifier><identifier>PMID: 18779586</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; ARNTL Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - physiology ; Biological Sciences ; Blood glucose ; Body tissues ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Fasting ; Gene expression ; Gene Expression Regulation ; Genes ; Genotypes ; Glucose ; Glucose - metabolism ; Homeostasis ; Homeostasis - genetics ; Insulin ; Liver ; Liver - metabolism ; Liver - physiology ; Metabolism ; Mice ; Mice, Mutant Strains ; Physiology ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (39), p.15172-15177</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 30, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</citedby><cites>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18779586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamia, Katja A</creatorcontrib><creatorcontrib>Storch, Kai-Florian</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><title>Physiological significance of a peripheral tissue circadian clock</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</description><subject>Animals</subject><subject>ARNTL Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>Biological Sciences</subject><subject>Blood glucose</subject><subject>Body tissues</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Fasting</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Insulin</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - physiology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Physiology</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modls9e1IHD4KHaV9-JxehlFoLBQXtOWQymd2ss5NpMiP2vzfLLt3qpac8-H7el_fNF6E3GE4xSHo2DjafggIhscTAn6EFBo1rwTQ8RwsAImvFCDtCxzmvAUBzBS_REVZSllEs0Pn31X0OsY_L4Gxf5bAcQlfGwfkqdpWtRp_CuPKpiFPIefaVC8nZNtihcn10v16hF53ts3-9f0_Q7ZfLnxdf65tvV9cX5ze140pPNZNtQxRQy6mnRGMpGgus5Z3QnmMgrCWKsq4hTdNg4axrubASOLNcYOU7eoI-73zHudn41vlhKkeZMYWNTfcm2mD-VYawMsv42xBOiQQoBh_3BinezT5PZhOy831vBx_nbIQWhDGNC_jhP3Ad5zSUcIYApgpzxgp0toNcijkn3z1cgsFsuzHbbsyhm7Lx7nGAA78vowCf9sB282DHDdUGcyyJ6ea-n_yfqbDVE2xB3u6QdZ5iemAIZ4JRqYv-fqd3Nhq7TCGb2x_bgFACSlm-7S_ka7Ym</recordid><startdate>20080930</startdate><enddate>20080930</enddate><creator>Lamia, Katja A</creator><creator>Storch, Kai-Florian</creator><creator>Weitz, Charles J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080930</creationdate><title>Physiological significance of a peripheral tissue circadian clock</title><author>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>Biological Sciences</topic><topic>Blood glucose</topic><topic>Body tissues</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Fasting</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Insulin</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - physiology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Physiology</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamia, Katja A</creatorcontrib><creatorcontrib>Storch, Kai-Florian</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamia, Katja A</au><au>Storch, Kai-Florian</au><au>Weitz, Charles J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological significance of a peripheral tissue circadian clock</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-30</date><risdate>2008</risdate><volume>105</volume><issue>39</issue><spage>15172</spage><epage>15177</epage><pages>15172-15177</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18779586</pmid><doi>10.1073/pnas.0806717105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (39), p.15172-15177
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_105_39_15172_fulltext
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
ARNTL Transcription Factors
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - physiology
Biological Sciences
Blood glucose
Body tissues
Circadian rhythm
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Fasting
Gene expression
Gene Expression Regulation
Genes
Genotypes
Glucose
Glucose - metabolism
Homeostasis
Homeostasis - genetics
Insulin
Liver
Liver - metabolism
Liver - physiology
Metabolism
Mice
Mice, Mutant Strains
Physiology
Tissues
title Physiological significance of a peripheral tissue circadian clock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20significance%20of%20a%20peripheral%20tissue%20circadian%20clock&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lamia,%20Katja%20A&rft.date=2008-09-30&rft.volume=105&rft.issue=39&rft.spage=15172&rft.epage=15177&rft.pages=15172-15177&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0806717105&rft_dat=%3Cjstor_pnas_%3E25464379%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201381544&rft_id=info:pmid/18779586&rft_jstor_id=25464379&rfr_iscdi=true