Physiological significance of a peripheral tissue circadian clock
Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at le...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (39), p.15172-15177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15177 |
---|---|
container_issue | 39 |
container_start_page | 15172 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Lamia, Katja A Storch, Kai-Florian Weitz, Charles J |
description | Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle. |
doi_str_mv | 10.1073/pnas.0806717105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_105_39_15172_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464379</jstor_id><sourcerecordid>25464379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modls9e1IHD4KHaV9-JxehlFoLBQXtOWQymd2ss5NpMiP2vzfLLt3qpac8-H7el_fNF6E3GE4xSHo2DjafggIhscTAn6EFBo1rwTQ8RwsAImvFCDtCxzmvAUBzBS_REVZSllEs0Pn31X0OsY_L4Gxf5bAcQlfGwfkqdpWtRp_CuPKpiFPIefaVC8nZNtihcn10v16hF53ts3-9f0_Q7ZfLnxdf65tvV9cX5ze140pPNZNtQxRQy6mnRGMpGgus5Z3QnmMgrCWKsq4hTdNg4axrubASOLNcYOU7eoI-73zHudn41vlhKkeZMYWNTfcm2mD-VYawMsv42xBOiQQoBh_3BinezT5PZhOy831vBx_nbIQWhDGNC_jhP3Ad5zSUcIYApgpzxgp0toNcijkn3z1cgsFsuzHbbsyhm7Lx7nGAA78vowCf9sB282DHDdUGcyyJ6ea-n_yfqbDVE2xB3u6QdZ5iemAIZ4JRqYv-fqd3Nhq7TCGb2x_bgFACSlm-7S_ka7Ym</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201381544</pqid></control><display><type>article</type><title>Physiological significance of a peripheral tissue circadian clock</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</creator><creatorcontrib>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</creatorcontrib><description>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0806717105</identifier><identifier>PMID: 18779586</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; ARNTL Transcription Factors ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - physiology ; Biological Sciences ; Blood glucose ; Body tissues ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Fasting ; Gene expression ; Gene Expression Regulation ; Genes ; Genotypes ; Glucose ; Glucose - metabolism ; Homeostasis ; Homeostasis - genetics ; Insulin ; Liver ; Liver - metabolism ; Liver - physiology ; Metabolism ; Mice ; Mice, Mutant Strains ; Physiology ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (39), p.15172-15177</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 30, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</citedby><cites>FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/39.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18779586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lamia, Katja A</creatorcontrib><creatorcontrib>Storch, Kai-Florian</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><title>Physiological significance of a peripheral tissue circadian clock</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</description><subject>Animals</subject><subject>ARNTL Transcription Factors</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>Biological Sciences</subject><subject>Blood glucose</subject><subject>Body tissues</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Fasting</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Homeostasis</subject><subject>Homeostasis - genetics</subject><subject>Insulin</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Liver - physiology</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Physiology</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modls9e1IHD4KHaV9-JxehlFoLBQXtOWQymd2ss5NpMiP2vzfLLt3qpac8-H7el_fNF6E3GE4xSHo2DjafggIhscTAn6EFBo1rwTQ8RwsAImvFCDtCxzmvAUBzBS_REVZSllEs0Pn31X0OsY_L4Gxf5bAcQlfGwfkqdpWtRp_CuPKpiFPIefaVC8nZNtihcn10v16hF53ts3-9f0_Q7ZfLnxdf65tvV9cX5ze140pPNZNtQxRQy6mnRGMpGgus5Z3QnmMgrCWKsq4hTdNg4axrubASOLNcYOU7eoI-73zHudn41vlhKkeZMYWNTfcm2mD-VYawMsv42xBOiQQoBh_3BinezT5PZhOy831vBx_nbIQWhDGNC_jhP3Ad5zSUcIYApgpzxgp0toNcijkn3z1cgsFsuzHbbsyhm7Lx7nGAA78vowCf9sB282DHDdUGcyyJ6ea-n_yfqbDVE2xB3u6QdZ5iemAIZ4JRqYv-fqd3Nhq7TCGb2x_bgFACSlm-7S_ka7Ym</recordid><startdate>20080930</startdate><enddate>20080930</enddate><creator>Lamia, Katja A</creator><creator>Storch, Kai-Florian</creator><creator>Weitz, Charles J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080930</creationdate><title>Physiological significance of a peripheral tissue circadian clock</title><author>Lamia, Katja A ; Storch, Kai-Florian ; Weitz, Charles J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-47db2803a53e329176ba04d5f69e51024d2834fb2bbb16cacd56a7054a5618ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>Biological Sciences</topic><topic>Blood glucose</topic><topic>Body tissues</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Fasting</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Homeostasis</topic><topic>Homeostasis - genetics</topic><topic>Insulin</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Liver - physiology</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Physiology</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lamia, Katja A</creatorcontrib><creatorcontrib>Storch, Kai-Florian</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lamia, Katja A</au><au>Storch, Kai-Florian</au><au>Weitz, Charles J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological significance of a peripheral tissue circadian clock</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-09-30</date><risdate>2008</risdate><volume>105</volume><issue>39</issue><spage>15172</spage><epage>15177</epage><pages>15172-15177</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mammals have circadian clocks in peripheral tissues, but there is no direct evidence of their physiological importance. Unlike the suprachiasmatic nucleus clock that is set by light and drives rest-activity and fasting-feeding cycles, peripheral clocks are set by daily feeding, suggesting that at least some contribute metabolic regulation. The liver plays a well known role in glucose homeostasis, and we report here that mice with a liver-specific deletion of Bmal1, an essential clock component, exhibited hypoglycemia restricted to the fasting phase of the daily feeding cycle, exaggerated glucose clearance, and loss of rhythmic expression of hepatic glucose regulatory genes. We conclude that the liver clock is important for buffering circulating glucose in a time-of-day-dependent manner. Our findings suggest that the liver clock contributes to homeostasis by driving a daily rhythm of hepatic glucose export that counterbalances the daily cycle of glucose ingestion resulting from the fasting-feeding cycle.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18779586</pmid><doi>10.1073/pnas.0806717105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-09, Vol.105 (39), p.15172-15177 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_105_39_15172_fulltext |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals ARNTL Transcription Factors Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - physiology Biological Sciences Blood glucose Body tissues Circadian rhythm Circadian Rhythm - genetics Circadian Rhythm - physiology Fasting Gene expression Gene Expression Regulation Genes Genotypes Glucose Glucose - metabolism Homeostasis Homeostasis - genetics Insulin Liver Liver - metabolism Liver - physiology Metabolism Mice Mice, Mutant Strains Physiology Tissues |
title | Physiological significance of a peripheral tissue circadian clock |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20significance%20of%20a%20peripheral%20tissue%20circadian%20clock&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lamia,%20Katja%20A&rft.date=2008-09-30&rft.volume=105&rft.issue=39&rft.spage=15172&rft.epage=15177&rft.pages=15172-15177&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0806717105&rft_dat=%3Cjstor_pnas_%3E25464379%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201381544&rft_id=info:pmid/18779586&rft_jstor_id=25464379&rfr_iscdi=true |