Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger

The CLC family of Cl⁻-transporting proteins includes both Cl⁻ channels and Cl⁻/H⁺ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl⁻ ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu¹⁴⁸ and T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-08, Vol.105 (32), p.11194-11199
Hauptverfasser: Jayaram, Hariharan, Accardi, Alessio, Wu, Fang, Williams, Carole, Miller, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11199
container_issue 32
container_start_page 11194
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Jayaram, Hariharan
Accardi, Alessio
Wu, Fang
Williams, Carole
Miller, Christopher
description The CLC family of Cl⁻-transporting proteins includes both Cl⁻ channels and Cl⁻/H⁺ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl⁻ ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu¹⁴⁸ and Tyr⁴⁴⁵, are known to impair H⁺ movement while preserving Cl⁻ transport. In the x-ray crystal structure of CLC-ec1, these residues form putative "gates" flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H⁺ transport is abolished, and unitary Cl⁻ transport rates are greatly increased, well above values expected for transporter mechanisms. Cl⁻ transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl⁻ flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations.
doi_str_mv 10.1073/pnas.0804503105
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_105_32_11194_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463315</jstor_id><sourcerecordid>25463315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8309256de6af2770c55b1f2b85eb30b965b82f8ca51e504e22a33da981fdd9bb3</originalsourceid><addsrcrecordid>eNqF0c1u1DAQAGALUdFl4cwJiLj1kO7YjhP7UgmtgFZaiQP0wMlynMlPlY1Xtrcqx74WvE2fhERZdempJ1uab8bjGULeUTinUPDVbjDhHCRkAjgF8YIsKCia5pmCl2QBwIpUZiw7Ja9DuAEAJSS8IqdU5oVUVC7Irys3JDv0WzSxG6-x9W7ftIlJ1v3D_d80YI82dreY2NYMA_ZJhaFrBqyS2rvt5Dbr2a4uH-7_JHg3wQb9G3JSmz7g28O5JNdfv_xcX6ab79-u1p83qRVSxVRyUEzkFeamZkUBVoiS1qyUAksOpcpFKVktrREUBWTImOG8MkrSuqpUWfIluZjr7vblFiuLQ_Sm1zvfbY3_rZ3p9NPI0LW6cbeaCZqzcYhL8mku4ELsdLBdRNtaN37WRk0BxlHlI1rNyHoXgsf68QEKelqFnlahj6sYMz7839fRH2Y_grMDmDKP5YTmTFNKVabrfd9HvIujTZ6xI3k_k5sQnX80TGQ553Tq5-Mcr43TpvFd0Nc_GFAO0wIkAP8H7mmzjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jayaram, Hariharan ; Accardi, Alessio ; Wu, Fang ; Williams, Carole ; Miller, Christopher</creator><creatorcontrib>Jayaram, Hariharan ; Accardi, Alessio ; Wu, Fang ; Williams, Carole ; Miller, Christopher ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The CLC family of Cl⁻-transporting proteins includes both Cl⁻ channels and Cl⁻/H⁺ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl⁻ ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu¹⁴⁸ and Tyr⁴⁴⁵, are known to impair H⁺ movement while preserving Cl⁻ transport. In the x-ray crystal structure of CLC-ec1, these residues form putative "gates" flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H⁺ transport is abolished, and unitary Cl⁻ transport rates are greatly increased, well above values expected for transporter mechanisms. Cl⁻ transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl⁻ flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804503105</identifier><identifier>PMID: 18678918</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Substitution ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biological Sciences ; Chloride channels ; Chloride Channels - chemistry ; Chloride Channels - genetics ; Chloride Channels - metabolism ; Chlorides - chemistry ; Chlorides - metabolism ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; GENE MUTATIONS ; Humans ; Ion channels ; Ion Transport - physiology ; Ion transporters ; Ions ; Liposomes ; MUTANTS ; MUTATIONS ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Point Mutation ; Protein Structure, Tertiary - genetics ; PROTEINS ; PROTONS ; RESIDUES ; Solutes ; STOICHIOMETRY ; TRANSPORT</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-08, Vol.105 (32), p.11194-11199</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8309256de6af2770c55b1f2b85eb30b965b82f8ca51e504e22a33da981fdd9bb3</citedby><cites>FETCH-LOGICAL-c589t-8309256de6af2770c55b1f2b85eb30b965b82f8ca51e504e22a33da981fdd9bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463315$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463315$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18678918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1006786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Accardi, Alessio</creatorcontrib><creatorcontrib>Wu, Fang</creatorcontrib><creatorcontrib>Williams, Carole</creatorcontrib><creatorcontrib>Miller, Christopher</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The CLC family of Cl⁻-transporting proteins includes both Cl⁻ channels and Cl⁻/H⁺ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl⁻ ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu¹⁴⁸ and Tyr⁴⁴⁵, are known to impair H⁺ movement while preserving Cl⁻ transport. In the x-ray crystal structure of CLC-ec1, these residues form putative "gates" flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H⁺ transport is abolished, and unitary Cl⁻ transport rates are greatly increased, well above values expected for transporter mechanisms. Cl⁻ transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl⁻ flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chloride channels</subject><subject>Chloride Channels - chemistry</subject><subject>Chloride Channels - genetics</subject><subject>Chloride Channels - metabolism</subject><subject>Chlorides - chemistry</subject><subject>Chlorides - metabolism</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>GENE MUTATIONS</subject><subject>Humans</subject><subject>Ion channels</subject><subject>Ion Transport - physiology</subject><subject>Ion transporters</subject><subject>Ions</subject><subject>Liposomes</subject><subject>MUTANTS</subject><subject>MUTATIONS</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Point Mutation</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>PROTEINS</subject><subject>PROTONS</subject><subject>RESIDUES</subject><subject>Solutes</subject><subject>STOICHIOMETRY</subject><subject>TRANSPORT</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u1DAQAGALUdFl4cwJiLj1kO7YjhP7UgmtgFZaiQP0wMlynMlPlY1Xtrcqx74WvE2fhERZdempJ1uab8bjGULeUTinUPDVbjDhHCRkAjgF8YIsKCia5pmCl2QBwIpUZiw7Ja9DuAEAJSS8IqdU5oVUVC7Irys3JDv0WzSxG6-x9W7ftIlJ1v3D_d80YI82dreY2NYMA_ZJhaFrBqyS2rvt5Dbr2a4uH-7_JHg3wQb9G3JSmz7g28O5JNdfv_xcX6ab79-u1p83qRVSxVRyUEzkFeamZkUBVoiS1qyUAksOpcpFKVktrREUBWTImOG8MkrSuqpUWfIluZjr7vblFiuLQ_Sm1zvfbY3_rZ3p9NPI0LW6cbeaCZqzcYhL8mku4ELsdLBdRNtaN37WRk0BxlHlI1rNyHoXgsf68QEKelqFnlahj6sYMz7839fRH2Y_grMDmDKP5YTmTFNKVabrfd9HvIujTZ6xI3k_k5sQnX80TGQ553Tq5-Mcr43TpvFd0Nc_GFAO0wIkAP8H7mmzjQ</recordid><startdate>20080812</startdate><enddate>20080812</enddate><creator>Jayaram, Hariharan</creator><creator>Accardi, Alessio</creator><creator>Wu, Fang</creator><creator>Williams, Carole</creator><creator>Miller, Christopher</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20080812</creationdate><title>Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger</title><author>Jayaram, Hariharan ; Accardi, Alessio ; Wu, Fang ; Williams, Carole ; Miller, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8309256de6af2770c55b1f2b85eb30b965b82f8ca51e504e22a33da981fdd9bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chloride channels</topic><topic>Chloride Channels - chemistry</topic><topic>Chloride Channels - genetics</topic><topic>Chloride Channels - metabolism</topic><topic>Chlorides - chemistry</topic><topic>Chlorides - metabolism</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>GENE MUTATIONS</topic><topic>Humans</topic><topic>Ion channels</topic><topic>Ion Transport - physiology</topic><topic>Ion transporters</topic><topic>Ions</topic><topic>Liposomes</topic><topic>MUTANTS</topic><topic>MUTATIONS</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Point Mutation</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>PROTEINS</topic><topic>PROTONS</topic><topic>RESIDUES</topic><topic>Solutes</topic><topic>STOICHIOMETRY</topic><topic>TRANSPORT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayaram, Hariharan</creatorcontrib><creatorcontrib>Accardi, Alessio</creatorcontrib><creatorcontrib>Wu, Fang</creatorcontrib><creatorcontrib>Williams, Carole</creatorcontrib><creatorcontrib>Miller, Christopher</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayaram, Hariharan</au><au>Accardi, Alessio</au><au>Wu, Fang</au><au>Williams, Carole</au><au>Miller, Christopher</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-08-12</date><risdate>2008</risdate><volume>105</volume><issue>32</issue><spage>11194</spage><epage>11199</epage><pages>11194-11199</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The CLC family of Cl⁻-transporting proteins includes both Cl⁻ channels and Cl⁻/H⁺ exchange transporters. CLC-ec1, a structurally known bacterial homolog of the transporter subclass, exchanges two Cl⁻ ions per proton with strict, obligatory stoichiometry. Point mutations at two residues, Glu¹⁴⁸ and Tyr⁴⁴⁵, are known to impair H⁺ movement while preserving Cl⁻ transport. In the x-ray crystal structure of CLC-ec1, these residues form putative "gates" flanking an ion-binding region. In mutants with both of the gate-forming side chains reduced in size, H⁺ transport is abolished, and unitary Cl⁻ transport rates are greatly increased, well above values expected for transporter mechanisms. Cl⁻ transport rates increase as side-chain volume at these positions is decreased. The crystal structure of a doubly ungated mutant shows a narrow conduit traversing the entire protein transmembrane width. These characteristics suggest that Cl⁻ flux through uncoupled, ungated CLC-ec1 occurs via a channel-like electrodiffusion mechanism rather than an alternating-exposure conformational cycle that has been rendered proton-independent by the gate mutations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18678918</pmid><doi>10.1073/pnas.0804503105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-08, Vol.105 (32), p.11194-11199
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_105_32_11194_fulltext
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Substitution
Animals
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biological Sciences
Chloride channels
Chloride Channels - chemistry
Chloride Channels - genetics
Chloride Channels - metabolism
Chlorides - chemistry
Chlorides - metabolism
CRYSTAL STRUCTURE
Crystallography, X-Ray
GENE MUTATIONS
Humans
Ion channels
Ion Transport - physiology
Ion transporters
Ions
Liposomes
MUTANTS
MUTATIONS
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Point Mutation
Protein Structure, Tertiary - genetics
PROTEINS
PROTONS
RESIDUES
Solutes
STOICHIOMETRY
TRANSPORT
title Ion permeation through a Cl⁻-selective channel designed from a CLC Cl⁻/H⁺ exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20permeation%20through%20a%20Cl%E2%81%BB-selective%20channel%20designed%20from%20a%20CLC%20Cl%E2%81%BB/H%E2%81%BA%20exchanger&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jayaram,%20Hariharan&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2008-08-12&rft.volume=105&rft.issue=32&rft.spage=11194&rft.epage=11199&rft.pages=11194-11199&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804503105&rft_dat=%3Cjstor_pnas_%3E25463315%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18678918&rft_jstor_id=25463315&rfr_iscdi=true