Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation
We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction wi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-08, Vol.105 (31), p.10949-10954 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10954 |
---|---|
container_issue | 31 |
container_start_page | 10949 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Takai, Ken Nakamura, Kentaro Toki, Tomohiro Tsunogai, Urumu Miyazaki, Masayuki Miyazaki, Junichi Hirayama, Hisako Nakagawa, Satoshi Nunoura, Takuro Horikoshi, Koki |
description | We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116°C at 0.4 MPa to 122°C at 20 MPa, providing the potential for growth even at 122°C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO₂. Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34[per thousand] to-27[per thousand]) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller ( |
doi_str_mv | 10.1073/pnas.0712334105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_105_31_10949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463267</jstor_id><sourcerecordid>25463267</sourcerecordid><originalsourceid>FETCH-LOGICAL-f230t-31be84baa7a8d8f7c8fc220bd99c211453936cc873538b7c72374e8e9433da8e3</originalsourceid><addsrcrecordid>eNqFkcGK1TAYhYMoznV07UrM1kXHJH_apBtBijrCgAuddUjT9DZDblOS9GK3Ij6Pz-Cj-CTGucOAK1dncb5zfjg_Qs8puaBEwOtl1umCCMoAOCX1A7SjpKVVw1vyEO0IYaKSnPEz9CSlG0JIW0vyGJ1R2TS8lrBDPzrrPV5i8G60UWcXZqwzpoz9-tlhPQ_YpZDD4oz2fsOT1ccNd5e_v33_GxpWc5voN6zxtC025snGQ1gm553BB5snPYe9nfE6Dzbiye2naok2pTVabFaf3fH25lP0aNQ-2Wd3eo6u37_70l1WV58-fOzeXlUjA5IroL2VvNdaaDnIURg5GsZIP7StYZTyGlpojJECapC9MIKB4FbalgMMWlo4R29OvcvaH-xg7Jyj9mqJ7qDjpoJ26l9ndpPah6NiZdGmkaUA3xWU5e9zZXoFtEjL24K8-g-ixtX7bL_mwr44sTcph3gPs5o3wBpR_Jcnf9RB6X10SV1_ZoRCeSVjvGbwB96_n6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Takai, Ken ; Nakamura, Kentaro ; Toki, Tomohiro ; Tsunogai, Urumu ; Miyazaki, Masayuki ; Miyazaki, Junichi ; Hirayama, Hisako ; Nakagawa, Satoshi ; Nunoura, Takuro ; Horikoshi, Koki</creator><creatorcontrib>Takai, Ken ; Nakamura, Kentaro ; Toki, Tomohiro ; Tsunogai, Urumu ; Miyazaki, Masayuki ; Miyazaki, Junichi ; Hirayama, Hisako ; Nakagawa, Satoshi ; Nunoura, Takuro ; Horikoshi, Koki</creatorcontrib><description>We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116°C at 0.4 MPa to 122°C at 20 MPa, providing the potential for growth even at 122°C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO₂. Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34[per thousand] to-27[per thousand]) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (<-12[per thousand]), and the kinetic isotope effect at 122°C and 40 MPa was -9.4[per thousand], which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0712334105</identifier><identifier>PMID: 18664583</identifier><language>eng</language><publisher>National Academy of Sciences</publisher><subject>Biological Sciences ; Carbon ; Carbon isotopes ; Cell growth ; Fractionation ; High temperature ; Hydrostatic pressure ; Isotope fractionation ; Methane ; Methane production ; Methanogens</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-08, Vol.105 (31), p.10949-10954</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids></links><search><creatorcontrib>Takai, Ken</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Toki, Tomohiro</creatorcontrib><creatorcontrib>Tsunogai, Urumu</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Hirayama, Hisako</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nunoura, Takuro</creatorcontrib><creatorcontrib>Horikoshi, Koki</creatorcontrib><title>Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116°C at 0.4 MPa to 122°C at 20 MPa, providing the potential for growth even at 122°C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO₂. Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34[per thousand] to-27[per thousand]) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (<-12[per thousand]), and the kinetic isotope effect at 122°C and 40 MPa was -9.4[per thousand], which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.</description><subject>Biological Sciences</subject><subject>Carbon</subject><subject>Carbon isotopes</subject><subject>Cell growth</subject><subject>Fractionation</subject><subject>High temperature</subject><subject>Hydrostatic pressure</subject><subject>Isotope fractionation</subject><subject>Methane</subject><subject>Methane production</subject><subject>Methanogens</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkcGK1TAYhYMoznV07UrM1kXHJH_apBtBijrCgAuddUjT9DZDblOS9GK3Ij6Pz-Cj-CTGucOAK1dncb5zfjg_Qs8puaBEwOtl1umCCMoAOCX1A7SjpKVVw1vyEO0IYaKSnPEz9CSlG0JIW0vyGJ1R2TS8lrBDPzrrPV5i8G60UWcXZqwzpoz9-tlhPQ_YpZDD4oz2fsOT1ccNd5e_v33_GxpWc5voN6zxtC025snGQ1gm553BB5snPYe9nfE6Dzbiye2naok2pTVabFaf3fH25lP0aNQ-2Wd3eo6u37_70l1WV58-fOzeXlUjA5IroL2VvNdaaDnIURg5GsZIP7StYZTyGlpojJECapC9MIKB4FbalgMMWlo4R29OvcvaH-xg7Jyj9mqJ7qDjpoJ26l9ndpPah6NiZdGmkaUA3xWU5e9zZXoFtEjL24K8-g-ixtX7bL_mwr44sTcph3gPs5o3wBpR_Jcnf9RB6X10SV1_ZoRCeSVjvGbwB96_n6M</recordid><startdate>20080805</startdate><enddate>20080805</enddate><creator>Takai, Ken</creator><creator>Nakamura, Kentaro</creator><creator>Toki, Tomohiro</creator><creator>Tsunogai, Urumu</creator><creator>Miyazaki, Masayuki</creator><creator>Miyazaki, Junichi</creator><creator>Hirayama, Hisako</creator><creator>Nakagawa, Satoshi</creator><creator>Nunoura, Takuro</creator><creator>Horikoshi, Koki</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>5PM</scope></search><sort><creationdate>20080805</creationdate><title>Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation</title><author>Takai, Ken ; Nakamura, Kentaro ; Toki, Tomohiro ; Tsunogai, Urumu ; Miyazaki, Masayuki ; Miyazaki, Junichi ; Hirayama, Hisako ; Nakagawa, Satoshi ; Nunoura, Takuro ; Horikoshi, Koki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f230t-31be84baa7a8d8f7c8fc220bd99c211453936cc873538b7c72374e8e9433da8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Sciences</topic><topic>Carbon</topic><topic>Carbon isotopes</topic><topic>Cell growth</topic><topic>Fractionation</topic><topic>High temperature</topic><topic>Hydrostatic pressure</topic><topic>Isotope fractionation</topic><topic>Methane</topic><topic>Methane production</topic><topic>Methanogens</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takai, Ken</creatorcontrib><creatorcontrib>Nakamura, Kentaro</creatorcontrib><creatorcontrib>Toki, Tomohiro</creatorcontrib><creatorcontrib>Tsunogai, Urumu</creatorcontrib><creatorcontrib>Miyazaki, Masayuki</creatorcontrib><creatorcontrib>Miyazaki, Junichi</creatorcontrib><creatorcontrib>Hirayama, Hisako</creatorcontrib><creatorcontrib>Nakagawa, Satoshi</creatorcontrib><creatorcontrib>Nunoura, Takuro</creatorcontrib><creatorcontrib>Horikoshi, Koki</creatorcontrib><collection>AGRIS</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takai, Ken</au><au>Nakamura, Kentaro</au><au>Toki, Tomohiro</au><au>Tsunogai, Urumu</au><au>Miyazaki, Masayuki</au><au>Miyazaki, Junichi</au><au>Hirayama, Hisako</au><au>Nakagawa, Satoshi</au><au>Nunoura, Takuro</au><au>Horikoshi, Koki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2008-08-05</date><risdate>2008</risdate><volume>105</volume><issue>31</issue><spage>10949</spage><epage>10954</epage><pages>10949-10954</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116°C at 0.4 MPa to 122°C at 20 MPa, providing the potential for growth even at 122°C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO₂. Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (-34[per thousand] to-27[per thousand]) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (<-12[per thousand]), and the kinetic isotope effect at 122°C and 40 MPa was -9.4[per thousand], which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.</abstract><pub>National Academy of Sciences</pub><pmid>18664583</pmid><doi>10.1073/pnas.0712334105</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-08, Vol.105 (31), p.10949-10954 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_105_31_10949 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Carbon Carbon isotopes Cell growth Fractionation High temperature Hydrostatic pressure Isotope fractionation Methane Methane production Methanogens |
title | Cell proliferation at 122°C and isotopically heavy CH₄ production by a hyperthermophilic methanogen under high-pressure cultivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20proliferation%20at%20122%C2%B0C%20and%20isotopically%20heavy%20CH%E2%82%84%20production%20by%20a%20hyperthermophilic%20methanogen%20under%20high-pressure%20cultivation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Takai,%20Ken&rft.date=2008-08-05&rft.volume=105&rft.issue=31&rft.spage=10949&rft.epage=10954&rft.pages=10949-10954&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0712334105&rft_dat=%3Cjstor_pnas_%3E25463267%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/18664583&rft_jstor_id=25463267&rfr_iscdi=true |