Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data
Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitiv...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-07, Vol.105 (27), p.9439-9444 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9444 |
---|---|
container_issue | 27 |
container_start_page | 9439 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Hansen, Matthew C Stehman, Stephen V Potapov, Peter V Loveland, Thomas R Townshend, John R.G DeFries, Ruth S Pittman, Kyle W Arunarwati, Belinda Stolle, Fred Steininger, Marc K Carroll, Mark DiMiceli, Charlene |
description | Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa. |
doi_str_mv | 10.1073/pnas.0804042105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_105_27_9439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462987</jstor_id><sourcerecordid>25462987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-ce166cccb1ea481a91f9c04816189b84972ae6c4cd8f51375be53a469ffa03ff3</originalsourceid><addsrcrecordid>eNp9ks1vFCEYxonR2LV69qSSHoyXbfmcgYuJadSaNPGgPROGgZXNDEyBadz4z5dxN1314AnC-3sf3ocHAF5idI5RSy-moPM5EoghRjDij8AKI4nXDZPoMVghRNq1YISdgGc5bxFCkgv0FJxgwSVuOFmBX1fz6HtYUpy80QN0MdlcoBmsTj5soEtxhKR2whKXlcPbWYfinbc97HZwzgs1zkPxxY5TTFVDh35_UqXiMBcfA0x2jMUOO5htyLW110U_B0-cHrJ9cVhPwc2nj98vr9bXXz9_ufxwvTYNFmVtLG4aY0yHrWYCa4mdNKjualV2gsmWaNsYZnrhOKYt7yynmjXSOY2oc_QUvN_rTnM32t7YUOqYakp-1Gmnovbq70rwP9Qm3inCOG2prAJvDwIp3s71fdTos7HDoIONc1YECUIbRit49g-4jXMK1VxlMJWoaVGFLvaQSTHnZN3DJBipJVW1pKqOqdaO138aOPKHGCvw5gAsnUc5rkirJPtt4d3_CeXmYSj2Z6noqz26zSWmB5Zw1hAp2uNlTkelN8lndfNtsVe_F2ZYCHoPT1rLCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201390670</pqid></control><display><type>article</type><title>Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hansen, Matthew C ; Stehman, Stephen V ; Potapov, Peter V ; Loveland, Thomas R ; Townshend, John R.G ; DeFries, Ruth S ; Pittman, Kyle W ; Arunarwati, Belinda ; Stolle, Fred ; Steininger, Marc K ; Carroll, Mark ; DiMiceli, Charlene</creator><creatorcontrib>Hansen, Matthew C ; Stehman, Stephen V ; Potapov, Peter V ; Loveland, Thomas R ; Townshend, John R.G ; DeFries, Ruth S ; Pittman, Kyle W ; Arunarwati, Belinda ; Stolle, Fred ; Steininger, Marc K ; Carroll, Mark ; DiMiceli, Charlene</creatorcontrib><description>Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804042105</identifier><identifier>PMID: 18591652</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biomes ; Carbon ; Climate change ; deforestation ; Environmental policy ; Forest cover ; Forest management ; geographical variation ; Geography ; Glades ; humid forests ; humid tropical forests ; Humid tropics ; Humidity ; International cooperation ; Landsat ; Rainforests ; remote sensing ; Sampling techniques ; Satellite Communications - instrumentation ; satellites ; Trees ; Tropical Climate ; Tropical forestry ; Tropical forests ; Tropical regions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-07, Vol.105 (27), p.9439-9444</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 8, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-ce166cccb1ea481a91f9c04816189b84972ae6c4cd8f51375be53a469ffa03ff3</citedby><cites>FETCH-LOGICAL-c618t-ce166cccb1ea481a91f9c04816189b84972ae6c4cd8f51375be53a469ffa03ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462987$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462987$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18591652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hansen, Matthew C</creatorcontrib><creatorcontrib>Stehman, Stephen V</creatorcontrib><creatorcontrib>Potapov, Peter V</creatorcontrib><creatorcontrib>Loveland, Thomas R</creatorcontrib><creatorcontrib>Townshend, John R.G</creatorcontrib><creatorcontrib>DeFries, Ruth S</creatorcontrib><creatorcontrib>Pittman, Kyle W</creatorcontrib><creatorcontrib>Arunarwati, Belinda</creatorcontrib><creatorcontrib>Stolle, Fred</creatorcontrib><creatorcontrib>Steininger, Marc K</creatorcontrib><creatorcontrib>Carroll, Mark</creatorcontrib><creatorcontrib>DiMiceli, Charlene</creatorcontrib><title>Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.</description><subject>Biological Sciences</subject><subject>Biomes</subject><subject>Carbon</subject><subject>Climate change</subject><subject>deforestation</subject><subject>Environmental policy</subject><subject>Forest cover</subject><subject>Forest management</subject><subject>geographical variation</subject><subject>Geography</subject><subject>Glades</subject><subject>humid forests</subject><subject>humid tropical forests</subject><subject>Humid tropics</subject><subject>Humidity</subject><subject>International cooperation</subject><subject>Landsat</subject><subject>Rainforests</subject><subject>remote sensing</subject><subject>Sampling techniques</subject><subject>Satellite Communications - instrumentation</subject><subject>satellites</subject><subject>Trees</subject><subject>Tropical Climate</subject><subject>Tropical forestry</subject><subject>Tropical forests</subject><subject>Tropical regions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1vFCEYxonR2LV69qSSHoyXbfmcgYuJadSaNPGgPROGgZXNDEyBadz4z5dxN1314AnC-3sf3ocHAF5idI5RSy-moPM5EoghRjDij8AKI4nXDZPoMVghRNq1YISdgGc5bxFCkgv0FJxgwSVuOFmBX1fz6HtYUpy80QN0MdlcoBmsTj5soEtxhKR2whKXlcPbWYfinbc97HZwzgs1zkPxxY5TTFVDh35_UqXiMBcfA0x2jMUOO5htyLW110U_B0-cHrJ9cVhPwc2nj98vr9bXXz9_ufxwvTYNFmVtLG4aY0yHrWYCa4mdNKjualV2gsmWaNsYZnrhOKYt7yynmjXSOY2oc_QUvN_rTnM32t7YUOqYakp-1Gmnovbq70rwP9Qm3inCOG2prAJvDwIp3s71fdTos7HDoIONc1YECUIbRit49g-4jXMK1VxlMJWoaVGFLvaQSTHnZN3DJBipJVW1pKqOqdaO138aOPKHGCvw5gAsnUc5rkirJPtt4d3_CeXmYSj2Z6noqz26zSWmB5Zw1hAp2uNlTkelN8lndfNtsVe_F2ZYCHoPT1rLCQ</recordid><startdate>20080708</startdate><enddate>20080708</enddate><creator>Hansen, Matthew C</creator><creator>Stehman, Stephen V</creator><creator>Potapov, Peter V</creator><creator>Loveland, Thomas R</creator><creator>Townshend, John R.G</creator><creator>DeFries, Ruth S</creator><creator>Pittman, Kyle W</creator><creator>Arunarwati, Belinda</creator><creator>Stolle, Fred</creator><creator>Steininger, Marc K</creator><creator>Carroll, Mark</creator><creator>DiMiceli, Charlene</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>5PM</scope></search><sort><creationdate>20080708</creationdate><title>Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data</title><author>Hansen, Matthew C ; Stehman, Stephen V ; Potapov, Peter V ; Loveland, Thomas R ; Townshend, John R.G ; DeFries, Ruth S ; Pittman, Kyle W ; Arunarwati, Belinda ; Stolle, Fred ; Steininger, Marc K ; Carroll, Mark ; DiMiceli, Charlene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-ce166cccb1ea481a91f9c04816189b84972ae6c4cd8f51375be53a469ffa03ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biological Sciences</topic><topic>Biomes</topic><topic>Carbon</topic><topic>Climate change</topic><topic>deforestation</topic><topic>Environmental policy</topic><topic>Forest cover</topic><topic>Forest management</topic><topic>geographical variation</topic><topic>Geography</topic><topic>Glades</topic><topic>humid forests</topic><topic>humid tropical forests</topic><topic>Humid tropics</topic><topic>Humidity</topic><topic>International cooperation</topic><topic>Landsat</topic><topic>Rainforests</topic><topic>remote sensing</topic><topic>Sampling techniques</topic><topic>Satellite Communications - instrumentation</topic><topic>satellites</topic><topic>Trees</topic><topic>Tropical Climate</topic><topic>Tropical forestry</topic><topic>Tropical forests</topic><topic>Tropical regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hansen, Matthew C</creatorcontrib><creatorcontrib>Stehman, Stephen V</creatorcontrib><creatorcontrib>Potapov, Peter V</creatorcontrib><creatorcontrib>Loveland, Thomas R</creatorcontrib><creatorcontrib>Townshend, John R.G</creatorcontrib><creatorcontrib>DeFries, Ruth S</creatorcontrib><creatorcontrib>Pittman, Kyle W</creatorcontrib><creatorcontrib>Arunarwati, Belinda</creatorcontrib><creatorcontrib>Stolle, Fred</creatorcontrib><creatorcontrib>Steininger, Marc K</creatorcontrib><creatorcontrib>Carroll, Mark</creatorcontrib><creatorcontrib>DiMiceli, Charlene</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hansen, Matthew C</au><au>Stehman, Stephen V</au><au>Potapov, Peter V</au><au>Loveland, Thomas R</au><au>Townshend, John R.G</au><au>DeFries, Ruth S</au><au>Pittman, Kyle W</au><au>Arunarwati, Belinda</au><au>Stolle, Fred</au><au>Steininger, Marc K</au><au>Carroll, Mark</au><au>DiMiceli, Charlene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-07-08</date><risdate>2008</risdate><volume>105</volume><issue>27</issue><spage>9439</spage><epage>9444</epage><pages>9439-9444</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18591652</pmid><doi>10.1073/pnas.0804042105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-07, Vol.105 (27), p.9439-9444 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_105_27_9439 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Biomes Carbon Climate change deforestation Environmental policy Forest cover Forest management geographical variation Geography Glades humid forests humid tropical forests Humid tropics Humidity International cooperation Landsat Rainforests remote sensing Sampling techniques Satellite Communications - instrumentation satellites Trees Tropical Climate Tropical forestry Tropical forests Tropical regions |
title | Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humid%20tropical%20forest%20clearing%20from%202000%20to%202005%20quantified%20by%20using%20multitemporal%20and%20multiresolution%20remotely%20sensed%20data&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hansen,%20Matthew%20C&rft.date=2008-07-08&rft.volume=105&rft.issue=27&rft.spage=9439&rft.epage=9444&rft.pages=9439-9444&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804042105&rft_dat=%3Cjstor_pnas_%3E25462987%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201390670&rft_id=info:pmid/18591652&rft_jstor_id=25462987&rfr_iscdi=true |