Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion
To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (7), p.2448-2453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 7 |
container_start_page | 2448 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Miles, Gareth B Hartley, Robert Todd, Andrew J Brownstone, Robert M |
description | To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present study, recordings from motoneurons in spinal cord slices demonstrated that cholinergic activation of m₂-type muscarinic receptors increases excitability by reducing the action potential afterhyperpolarization. Analyses of isolated spinal cord preparations in which fictive locomotion was elicited demonstrated that endogenous cholinergic inputs increase motoneuron excitability during locomotion. Anatomical data indicate that C boutons originate from a discrete group of interneurons lateral to the central canal, the medial partition neurons. These results highlight a unique component of spinal motor networks that is critical in ensuring that sufficient output is generated by motoneurons to drive motor behavior. |
doi_str_mv | 10.1073/pnas.0611134104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_104_7_2448_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426490</jstor_id><sourcerecordid>25426490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-bb2369ab25ca3265e9afb29c68ecb1abebab50f6b6b28863d4b6ee23a9c78baf3</originalsourceid><addsrcrecordid>eNqFkjtvFDEUhUcIRJZATQWMKKCaxK_1o0FCES8pEkVIQ2PZ3juzXnntxfag5N8zo12ygQIqSz7fPb73HjfNc4zOMBL0fBdNOUMcY0wZRuxBs8BI4Y4zhR42C4SI6CQj7KR5UsoGIaSWEj1uTrAgUlBGF833q52PJrRunYKPkAfvWh8r5AhjTrG0GYYxmAptXUMLN85XY33w9bZNfbtNNf0GV2P2cWhDcmm69ik-bR71JhR4djhPm-uPH75dfO4uv376cvH-snMc89pZSyhXxpKlM5TwJSjTW6Icl-AsNhassUvUc8stkZLTFbMcgFCjnJDW9PS0ebf33Y12CysHsWYT9C77rcm3Ohmv_1SiX-sh_dRYKEYZmwzeHAxy-jFCqXrri4MQTIQ0Fs0VQhJx9V8QT-uVFM-Or_8CN2nM056LJghTSaWQE3S-h1xOpWTo71rGSM_p6jldfUx3qnh5f9Ijf4jzHjBXHu2YFpowNr_59p-A7scQKtzUiXyxJzelpnyHkiUj8--a9Fd7vTdJmyH7oq-v5uEQEkyIKahfhRDO2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201383878</pqid></control><display><type>article</type><title>Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miles, Gareth B ; Hartley, Robert ; Todd, Andrew J ; Brownstone, Robert M</creator><creatorcontrib>Miles, Gareth B ; Hartley, Robert ; Todd, Andrew J ; Brownstone, Robert M</creatorcontrib><description>To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present study, recordings from motoneurons in spinal cord slices demonstrated that cholinergic activation of m₂-type muscarinic receptors increases excitability by reducing the action potential afterhyperpolarization. Analyses of isolated spinal cord preparations in which fictive locomotion was elicited demonstrated that endogenous cholinergic inputs increase motoneuron excitability during locomotion. Anatomical data indicate that C boutons originate from a discrete group of interneurons lateral to the central canal, the medial partition neurons. These results highlight a unique component of spinal motor networks that is critical in ensuring that sufficient output is generated by motoneurons to drive motor behavior.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0611134104</identifier><identifier>PMID: 17287343</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetylcholine ; Action Potentials ; Anatomy ; Animals ; Biological Sciences ; Canals ; Cholinergics ; Interneurons ; Interneurons - physiology ; Locomotion ; Locomotion - physiology ; Mice ; Motor Activity ; Motor Neurons - physiology ; Muscarinic receptors ; Neurons ; Neurosciences ; Neurotransmitters ; Physiological regulation ; Receptor, Muscarinic M2 ; Receptors ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2448-2453</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 13, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-bb2369ab25ca3265e9afb29c68ecb1abebab50f6b6b28863d4b6ee23a9c78baf3</citedby><cites>FETCH-LOGICAL-c616t-bb2369ab25ca3265e9afb29c68ecb1abebab50f6b6b28863d4b6ee23a9c78baf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426490$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426490$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27906,27907,53773,53775,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17287343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miles, Gareth B</creatorcontrib><creatorcontrib>Hartley, Robert</creatorcontrib><creatorcontrib>Todd, Andrew J</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><title>Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present study, recordings from motoneurons in spinal cord slices demonstrated that cholinergic activation of m₂-type muscarinic receptors increases excitability by reducing the action potential afterhyperpolarization. Analyses of isolated spinal cord preparations in which fictive locomotion was elicited demonstrated that endogenous cholinergic inputs increase motoneuron excitability during locomotion. Anatomical data indicate that C boutons originate from a discrete group of interneurons lateral to the central canal, the medial partition neurons. These results highlight a unique component of spinal motor networks that is critical in ensuring that sufficient output is generated by motoneurons to drive motor behavior.</description><subject>Acetylcholine</subject><subject>Action Potentials</subject><subject>Anatomy</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Canals</subject><subject>Cholinergics</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Locomotion</subject><subject>Locomotion - physiology</subject><subject>Mice</subject><subject>Motor Activity</subject><subject>Motor Neurons - physiology</subject><subject>Muscarinic receptors</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotransmitters</subject><subject>Physiological regulation</subject><subject>Receptor, Muscarinic M2</subject><subject>Receptors</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkjtvFDEUhUcIRJZATQWMKKCaxK_1o0FCES8pEkVIQ2PZ3juzXnntxfag5N8zo12ygQIqSz7fPb73HjfNc4zOMBL0fBdNOUMcY0wZRuxBs8BI4Y4zhR42C4SI6CQj7KR5UsoGIaSWEj1uTrAgUlBGF833q52PJrRunYKPkAfvWh8r5AhjTrG0GYYxmAptXUMLN85XY33w9bZNfbtNNf0GV2P2cWhDcmm69ik-bR71JhR4djhPm-uPH75dfO4uv376cvH-snMc89pZSyhXxpKlM5TwJSjTW6Icl-AsNhassUvUc8stkZLTFbMcgFCjnJDW9PS0ebf33Y12CysHsWYT9C77rcm3Ohmv_1SiX-sh_dRYKEYZmwzeHAxy-jFCqXrri4MQTIQ0Fs0VQhJx9V8QT-uVFM-Or_8CN2nM056LJghTSaWQE3S-h1xOpWTo71rGSM_p6jldfUx3qnh5f9Ijf4jzHjBXHu2YFpowNr_59p-A7scQKtzUiXyxJzelpnyHkiUj8--a9Fd7vTdJmyH7oq-v5uEQEkyIKahfhRDO2w</recordid><startdate>20070213</startdate><enddate>20070213</enddate><creator>Miles, Gareth B</creator><creator>Hartley, Robert</creator><creator>Todd, Andrew J</creator><creator>Brownstone, Robert M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070213</creationdate><title>Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion</title><author>Miles, Gareth B ; Hartley, Robert ; Todd, Andrew J ; Brownstone, Robert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-bb2369ab25ca3265e9afb29c68ecb1abebab50f6b6b28863d4b6ee23a9c78baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Acetylcholine</topic><topic>Action Potentials</topic><topic>Anatomy</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Canals</topic><topic>Cholinergics</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Locomotion</topic><topic>Locomotion - physiology</topic><topic>Mice</topic><topic>Motor Activity</topic><topic>Motor Neurons - physiology</topic><topic>Muscarinic receptors</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotransmitters</topic><topic>Physiological regulation</topic><topic>Receptor, Muscarinic M2</topic><topic>Receptors</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miles, Gareth B</creatorcontrib><creatorcontrib>Hartley, Robert</creatorcontrib><creatorcontrib>Todd, Andrew J</creatorcontrib><creatorcontrib>Brownstone, Robert M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miles, Gareth B</au><au>Hartley, Robert</au><au>Todd, Andrew J</au><au>Brownstone, Robert M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-13</date><risdate>2007</risdate><volume>104</volume><issue>7</issue><spage>2448</spage><epage>2453</epage><pages>2448-2453</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To effect movement, motoneurons must respond appropriately to motor commands. Their responsiveness to these inputs, or excitability, is regulated by neuromodulators. Possible sources of modulation include the abundant cholinergic "C boutons" that surround motoneuron somata. In the present study, recordings from motoneurons in spinal cord slices demonstrated that cholinergic activation of m₂-type muscarinic receptors increases excitability by reducing the action potential afterhyperpolarization. Analyses of isolated spinal cord preparations in which fictive locomotion was elicited demonstrated that endogenous cholinergic inputs increase motoneuron excitability during locomotion. Anatomical data indicate that C boutons originate from a discrete group of interneurons lateral to the central canal, the medial partition neurons. These results highlight a unique component of spinal motor networks that is critical in ensuring that sufficient output is generated by motoneurons to drive motor behavior.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17287343</pmid><doi>10.1073/pnas.0611134104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2448-2453 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_104_7_2448_fulltext |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acetylcholine Action Potentials Anatomy Animals Biological Sciences Canals Cholinergics Interneurons Interneurons - physiology Locomotion Locomotion - physiology Mice Motor Activity Motor Neurons - physiology Muscarinic receptors Neurons Neurosciences Neurotransmitters Physiological regulation Receptor, Muscarinic M2 Receptors Spinal cord Spinal Cord - cytology Spinal Cord - physiology |
title | Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20cholinergic%20interneurons%20regulate%20the%20excitability%20of%20motoneurons%20during%20locomotion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miles,%20Gareth%20B&rft.date=2007-02-13&rft.volume=104&rft.issue=7&rft.spage=2448&rft.epage=2453&rft.pages=2448-2453&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0611134104&rft_dat=%3Cjstor_pnas_%3E25426490%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201383878&rft_id=info:pmid/17287343&rft_jstor_id=25426490&rfr_iscdi=true |