Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning

What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (41), p.16311-16316
Hauptverfasser: Frank, Michael J., Moustafa, Ahmed A., Haughey, Heather M., Curran, Tim, Hutchison, Kent E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16316
container_issue 41
container_start_page 16311
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Frank, Michael J.
Moustafa, Ahmed A.
Haughey, Heather M.
Curran, Tim
Hutchison, Kent E.
description What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.
doi_str_mv 10.1073/pnas.0706111104
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_104_41_16311_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449311</jstor_id><sourcerecordid>25449311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-dd5929678cdff1e9a9ab22879d835cb91b4c5f757d12ee780c3ef668bbe036073</originalsourceid><addsrcrecordid>eNqF0sFu1DAQBmALgehSOHMCRRyQOKQdO05sX5BQCwVpEVJVDpwsx5kUrxJ7sZMK3h6nu-oCB5pLpMw3v-zJEPKcwgkFUZ1uvUknIKCh-QH-gKwoKFo2XMFDsgJgopSc8SPyJKUNAKhawmNyRIWilRRqRb5doMfJ2eIquu2AxblLKVhnJhd8cYk3aIZUfJ6H6bZ6GQZMRR9icR62ZnQeC7cw5_M3iyP6qVijid7566fkUZ-b8dn-fUy-fnh_dfaxXH-5-HT2bl3ahlVT2XW1YqoR0nZ9T1EZZVrG8tk6WdW2VbTltu5FLTrKEIUEW2HfNLJtEaomz-CYvN3lbud2xM7mM0Qz6G10o4m_dDBO_13x7ru-DjeaAWcMqhzweh8Qw48Z06RHlywOg_EY5qQbyaHK87oX5kCQlNYZvvoHbsIcfZ5CNrSqBb1N-y-iAFxmdLpDNoaUIvZ396Kglw3Qywbowwbkjpd_juPg9788gzd7sHQe4rjmVNOmolT38zBM-HPKtrjHZvJiRzZpCvHOsJpztdR_A9vEzpU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201310048</pqid></control><display><type>article</type><title>Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Frank, Michael J. ; Moustafa, Ahmed A. ; Haughey, Heather M. ; Curran, Tim ; Hutchison, Kent E.</creator><creatorcontrib>Frank, Michael J. ; Moustafa, Ahmed A. ; Haughey, Heather M. ; Curran, Tim ; Hutchison, Kent E.</creatorcontrib><description>What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0706111104</identifier><identifier>PMID: 17913879</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adolescent ; Adult ; Algorithms ; Biological Sciences ; Brain ; Brain - physiology ; Catechol O-Methyltransferase - genetics ; Dopamine - genetics ; Dopamine - physiology ; Dopamine and cAMP-Regulated Phosphoprotein 32 - genetics ; Female ; Genetics ; Genetics, Behavioral ; Genotypes ; Human genetics ; Humans ; Learning ; Learning modules ; Learning rate ; Male ; Maximum likelihood method ; Medical genetics ; Models, Genetic ; Models, Psychological ; Negative feedback ; Neurons ; Neurotransmitters ; Polymorphism ; Polymorphism, Genetic ; Positive feedback ; Receptors ; Receptors, Dopamine D2 - genetics ; Reinforcement (Psychology) ; Social Sciences ; Working memory</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.16311-16316</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 9, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-dd5929678cdff1e9a9ab22879d835cb91b4c5f757d12ee780c3ef668bbe036073</citedby><cites>FETCH-LOGICAL-c623t-dd5929678cdff1e9a9ab22879d835cb91b4c5f757d12ee780c3ef668bbe036073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449311$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449311$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17913879$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Michael J.</creatorcontrib><creatorcontrib>Moustafa, Ahmed A.</creatorcontrib><creatorcontrib>Haughey, Heather M.</creatorcontrib><creatorcontrib>Curran, Tim</creatorcontrib><creatorcontrib>Hutchison, Kent E.</creatorcontrib><title>Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Catechol O-Methyltransferase - genetics</subject><subject>Dopamine - genetics</subject><subject>Dopamine - physiology</subject><subject>Dopamine and cAMP-Regulated Phosphoprotein 32 - genetics</subject><subject>Female</subject><subject>Genetics</subject><subject>Genetics, Behavioral</subject><subject>Genotypes</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Learning</subject><subject>Learning modules</subject><subject>Learning rate</subject><subject>Male</subject><subject>Maximum likelihood method</subject><subject>Medical genetics</subject><subject>Models, Genetic</subject><subject>Models, Psychological</subject><subject>Negative feedback</subject><subject>Neurons</subject><subject>Neurotransmitters</subject><subject>Polymorphism</subject><subject>Polymorphism, Genetic</subject><subject>Positive feedback</subject><subject>Receptors</subject><subject>Receptors, Dopamine D2 - genetics</subject><subject>Reinforcement (Psychology)</subject><subject>Social Sciences</subject><subject>Working memory</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0sFu1DAQBmALgehSOHMCRRyQOKQdO05sX5BQCwVpEVJVDpwsx5kUrxJ7sZMK3h6nu-oCB5pLpMw3v-zJEPKcwgkFUZ1uvUknIKCh-QH-gKwoKFo2XMFDsgJgopSc8SPyJKUNAKhawmNyRIWilRRqRb5doMfJ2eIquu2AxblLKVhnJhd8cYk3aIZUfJ6H6bZ6GQZMRR9icR62ZnQeC7cw5_M3iyP6qVijid7566fkUZ-b8dn-fUy-fnh_dfaxXH-5-HT2bl3ahlVT2XW1YqoR0nZ9T1EZZVrG8tk6WdW2VbTltu5FLTrKEIUEW2HfNLJtEaomz-CYvN3lbud2xM7mM0Qz6G10o4m_dDBO_13x7ru-DjeaAWcMqhzweh8Qw48Z06RHlywOg_EY5qQbyaHK87oX5kCQlNYZvvoHbsIcfZ5CNrSqBb1N-y-iAFxmdLpDNoaUIvZ396Kglw3Qywbowwbkjpd_juPg9788gzd7sHQe4rjmVNOmolT38zBM-HPKtrjHZvJiRzZpCvHOsJpztdR_A9vEzpU</recordid><startdate>20071009</startdate><enddate>20071009</enddate><creator>Frank, Michael J.</creator><creator>Moustafa, Ahmed A.</creator><creator>Haughey, Heather M.</creator><creator>Curran, Tim</creator><creator>Hutchison, Kent E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071009</creationdate><title>Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning</title><author>Frank, Michael J. ; Moustafa, Ahmed A. ; Haughey, Heather M. ; Curran, Tim ; Hutchison, Kent E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-dd5929678cdff1e9a9ab22879d835cb91b4c5f757d12ee780c3ef668bbe036073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Catechol O-Methyltransferase - genetics</topic><topic>Dopamine - genetics</topic><topic>Dopamine - physiology</topic><topic>Dopamine and cAMP-Regulated Phosphoprotein 32 - genetics</topic><topic>Female</topic><topic>Genetics</topic><topic>Genetics, Behavioral</topic><topic>Genotypes</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Learning</topic><topic>Learning modules</topic><topic>Learning rate</topic><topic>Male</topic><topic>Maximum likelihood method</topic><topic>Medical genetics</topic><topic>Models, Genetic</topic><topic>Models, Psychological</topic><topic>Negative feedback</topic><topic>Neurons</topic><topic>Neurotransmitters</topic><topic>Polymorphism</topic><topic>Polymorphism, Genetic</topic><topic>Positive feedback</topic><topic>Receptors</topic><topic>Receptors, Dopamine D2 - genetics</topic><topic>Reinforcement (Psychology)</topic><topic>Social Sciences</topic><topic>Working memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Michael J.</creatorcontrib><creatorcontrib>Moustafa, Ahmed A.</creatorcontrib><creatorcontrib>Haughey, Heather M.</creatorcontrib><creatorcontrib>Curran, Tim</creatorcontrib><creatorcontrib>Hutchison, Kent E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Michael J.</au><au>Moustafa, Ahmed A.</au><au>Haughey, Heather M.</au><au>Curran, Tim</au><au>Hutchison, Kent E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-10-09</date><risdate>2007</risdate><volume>104</volume><issue>41</issue><spage>16311</spage><epage>16316</epage><pages>16311-16316</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>What are the genetic and neural components that support adaptive learning from positive and negative outcomes? Here, we show with genetic analyses that three independent dopaminergic mechanisms contribute to reward and avoidance learning in humans. A polymorphism in the DARPP-32 gene, associated with striatal dopamine function, predicted relatively better probabilistic reward learning. Conversely, the C957T polymorphism of the DRD2 gene, associated with striatal D2 receptor function, predicted the degree to which participants learned to avoid choices that had been probabilistically associated with negative outcomes. The Val/Met polymorphism of the COMT gene, associated with prefrontal cortical dopamine function, predicted participants' ability to rapidly adapt behavior on a trial-to-trial basis. These findings support a neurocomputational dissociation between striatal and prefrontal dopaminergic mechanisms in reinforcement learning. Computational maximum likelihood analyses reveal independent gene effects on three reinforcement learning parameters that can explain the observed dissociations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17913879</pmid><doi>10.1073/pnas.0706111104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.16311-16316
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_104_41_16311_fulltext
source Jstor Complete Legacy; MEDLINE; PubMed; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adolescent
Adult
Algorithms
Biological Sciences
Brain
Brain - physiology
Catechol O-Methyltransferase - genetics
Dopamine - genetics
Dopamine - physiology
Dopamine and cAMP-Regulated Phosphoprotein 32 - genetics
Female
Genetics
Genetics, Behavioral
Genotypes
Human genetics
Humans
Learning
Learning modules
Learning rate
Male
Maximum likelihood method
Medical genetics
Models, Genetic
Models, Psychological
Negative feedback
Neurons
Neurotransmitters
Polymorphism
Polymorphism, Genetic
Positive feedback
Receptors
Receptors, Dopamine D2 - genetics
Reinforcement (Psychology)
Social Sciences
Working memory
title Genetic Triple Dissociation Reveals Multiple Roles for Dopamine in Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Triple%20Dissociation%20Reveals%20Multiple%20Roles%20for%20Dopamine%20in%20Reinforcement%20Learning&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Frank,%20Michael%20J.&rft.date=2007-10-09&rft.volume=104&rft.issue=41&rft.spage=16311&rft.epage=16316&rft.pages=16311-16316&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0706111104&rft_dat=%3Cjstor_pnas_%3E25449311%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201310048&rft_id=info:pmid/17913879&rft_jstor_id=25449311&rfr_iscdi=true