Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors

In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (26), p.10824-10829
Hauptverfasser: Lekomtsev, Sergey, Kolosov, Petr, Bidou, Laure, Frolova, Ludmila, Rousset, Jean-Pierre, Kisselev, Lev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10829
container_issue 26
container_start_page 10824
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Lekomtsev, Sergey
Kolosov, Petr
Bidou, Laure
Frolova, Ludmila
Rousset, Jean-Pierre
Kisselev, Lev
description In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.
doi_str_mv 10.1073/pnas.0703887104
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_104_26_10824_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436023</jstor_id><sourcerecordid>25436023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAlkcUDikHb8Ece5IFULS5EWgcpythzHZrNK4mAnFfvv8TarLvTCwZqR55l3NPMi9JLABYGCXQ69jhdQAJOyIMAfoQWBkmSCl_AYLQBokUlO-Rl6FuMOAMpcwlN0Roq8YDmVCzR8aJyzwfYj_uJrG7F3-PvoB7z0te_xjY1jaMzYpLza43FrU3Xf-n5vto3Guq_xNx10Z00zddjerAjeBN3HVt-1bGzomn7OV9qMPsTn6InTbbQvjvEc_Vh93Cyvs_XXT5-XV-vM5IKPmYNSFJUuKym4YdbUwlbghJDMVryyrLY8dySvmWMCeO3S05o6yI2pDNWCnaP3s-4wVZ2tTdow6FYNoel02CuvG_VvpW-26qe_VaQETkSeBN7NAtsHbddXa3X4AyCyFLS4JYl9exwW_K8p3Ux1TTS2bXVv_RSTpihpAWUC3zwAd34KfTqEokA4kVQe1C5nyAQfY7DufjwBdbBdHWxXJ9tTx-u_lz3xR59Py9x1nuS4oiIFSblyU9uO9veYWPwfNiGvZmQXk6f3DM15coMy9gfvC8zV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201418281</pqid></control><display><type>article</type><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</creator><creatorcontrib>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</creatorcontrib><description>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703887104</identifier><identifier>PMID: 17573528</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Sciences ; Chimeras ; Ciliophora - genetics ; Codon, Terminator ; Codons ; Decryption ; Eukaryotes ; Eukaryotic cells ; Genetic vectors ; Genomics ; Humans ; Life Sciences ; Omnipotence ; Paramecium ; Paramecium - genetics ; Peptide Termination Factors - genetics ; Peptide Termination Factors - physiology ; Plasmids ; Protein Biosynthesis - genetics ; Proteins ; Protozoa ; Protozoan Proteins - genetics ; Protozoan Proteins - physiology ; Recombinant Fusion Proteins ; Ribosomes ; Stop codon ; Stylonychia ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10824-10829</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 26, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</citedby><cites>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17573528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00189627$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lekomtsev, Sergey</creatorcontrib><creatorcontrib>Kolosov, Petr</creatorcontrib><creatorcontrib>Bidou, Laure</creatorcontrib><creatorcontrib>Frolova, Ludmila</creatorcontrib><creatorcontrib>Rousset, Jean-Pierre</creatorcontrib><creatorcontrib>Kisselev, Lev</creatorcontrib><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Chimeras</subject><subject>Ciliophora - genetics</subject><subject>Codon, Terminator</subject><subject>Codons</subject><subject>Decryption</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Genetic vectors</subject><subject>Genomics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Omnipotence</subject><subject>Paramecium</subject><subject>Paramecium - genetics</subject><subject>Peptide Termination Factors - genetics</subject><subject>Peptide Termination Factors - physiology</subject><subject>Plasmids</subject><subject>Protein Biosynthesis - genetics</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - physiology</subject><subject>Recombinant Fusion Proteins</subject><subject>Ribosomes</subject><subject>Stop codon</subject><subject>Stylonychia</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhzAlkcUDikHb8Ece5IFULS5EWgcpythzHZrNK4mAnFfvv8TarLvTCwZqR55l3NPMi9JLABYGCXQ69jhdQAJOyIMAfoQWBkmSCl_AYLQBokUlO-Rl6FuMOAMpcwlN0Roq8YDmVCzR8aJyzwfYj_uJrG7F3-PvoB7z0te_xjY1jaMzYpLza43FrU3Xf-n5vto3Guq_xNx10Z00zddjerAjeBN3HVt-1bGzomn7OV9qMPsTn6InTbbQvjvEc_Vh93Cyvs_XXT5-XV-vM5IKPmYNSFJUuKym4YdbUwlbghJDMVryyrLY8dySvmWMCeO3S05o6yI2pDNWCnaP3s-4wVZ2tTdow6FYNoel02CuvG_VvpW-26qe_VaQETkSeBN7NAtsHbddXa3X4AyCyFLS4JYl9exwW_K8p3Ux1TTS2bXVv_RSTpihpAWUC3zwAd34KfTqEokA4kVQe1C5nyAQfY7DufjwBdbBdHWxXJ9tTx-u_lz3xR59Py9x1nuS4oiIFSblyU9uO9veYWPwfNiGvZmQXk6f3DM15coMy9gfvC8zV</recordid><startdate>20070626</startdate><enddate>20070626</enddate><creator>Lekomtsev, Sergey</creator><creator>Kolosov, Petr</creator><creator>Bidou, Laure</creator><creator>Frolova, Ludmila</creator><creator>Rousset, Jean-Pierre</creator><creator>Kisselev, Lev</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20070626</creationdate><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><author>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Chimeras</topic><topic>Ciliophora - genetics</topic><topic>Codon, Terminator</topic><topic>Codons</topic><topic>Decryption</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Genetic vectors</topic><topic>Genomics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Omnipotence</topic><topic>Paramecium</topic><topic>Paramecium - genetics</topic><topic>Peptide Termination Factors - genetics</topic><topic>Peptide Termination Factors - physiology</topic><topic>Plasmids</topic><topic>Protein Biosynthesis - genetics</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - physiology</topic><topic>Recombinant Fusion Proteins</topic><topic>Ribosomes</topic><topic>Stop codon</topic><topic>Stylonychia</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lekomtsev, Sergey</creatorcontrib><creatorcontrib>Kolosov, Petr</creatorcontrib><creatorcontrib>Bidou, Laure</creatorcontrib><creatorcontrib>Frolova, Ludmila</creatorcontrib><creatorcontrib>Rousset, Jean-Pierre</creatorcontrib><creatorcontrib>Kisselev, Lev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lekomtsev, Sergey</au><au>Kolosov, Petr</au><au>Bidou, Laure</au><au>Frolova, Ludmila</au><au>Rousset, Jean-Pierre</au><au>Kisselev, Lev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-26</date><risdate>2007</risdate><volume>104</volume><issue>26</issue><spage>10824</spage><epage>10829</epage><pages>10824-10829</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17573528</pmid><doi>10.1073/pnas.0703887104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10824-10829
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_104_26_10824_fulltext
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino acids
Animals
Base Sequence
Biochemistry
Biochemistry, Molecular Biology
Biological Sciences
Chimeras
Ciliophora - genetics
Codon, Terminator
Codons
Decryption
Eukaryotes
Eukaryotic cells
Genetic vectors
Genomics
Humans
Life Sciences
Omnipotence
Paramecium
Paramecium - genetics
Peptide Termination Factors - genetics
Peptide Termination Factors - physiology
Plasmids
Protein Biosynthesis - genetics
Proteins
Protozoa
Protozoan Proteins - genetics
Protozoan Proteins - physiology
Recombinant Fusion Proteins
Ribosomes
Stop codon
Stylonychia
Substrate Specificity
title Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20Modes%20of%20Stop%20Codon%20Restriction%20by%20the%20Stylonychia%20and%20Paramecium%20eRF1%20Translation%20Termination%20Factors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lekomtsev,%20Sergey&rft.date=2007-06-26&rft.volume=104&rft.issue=26&rft.spage=10824&rft.epage=10829&rft.pages=10824-10829&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703887104&rft_dat=%3Cjstor_pnas_%3E25436023%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201418281&rft_id=info:pmid/17573528&rft_jstor_id=25436023&rfr_iscdi=true