Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors
In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (26), p.10824-10829 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10829 |
---|---|
container_issue | 26 |
container_start_page | 10824 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Lekomtsev, Sergey Kolosov, Petr Bidou, Laure Frolova, Ludmila Rousset, Jean-Pierre Kisselev, Lev |
description | In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons. |
doi_str_mv | 10.1073/pnas.0703887104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_104_26_10824_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436023</jstor_id><sourcerecordid>25436023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhzAlkcUDikHb8Ece5IFULS5EWgcpythzHZrNK4mAnFfvv8TarLvTCwZqR55l3NPMi9JLABYGCXQ69jhdQAJOyIMAfoQWBkmSCl_AYLQBokUlO-Rl6FuMOAMpcwlN0Roq8YDmVCzR8aJyzwfYj_uJrG7F3-PvoB7z0te_xjY1jaMzYpLza43FrU3Xf-n5vto3Guq_xNx10Z00zddjerAjeBN3HVt-1bGzomn7OV9qMPsTn6InTbbQvjvEc_Vh93Cyvs_XXT5-XV-vM5IKPmYNSFJUuKym4YdbUwlbghJDMVryyrLY8dySvmWMCeO3S05o6yI2pDNWCnaP3s-4wVZ2tTdow6FYNoel02CuvG_VvpW-26qe_VaQETkSeBN7NAtsHbddXa3X4AyCyFLS4JYl9exwW_K8p3Ux1TTS2bXVv_RSTpihpAWUC3zwAd34KfTqEokA4kVQe1C5nyAQfY7DufjwBdbBdHWxXJ9tTx-u_lz3xR59Py9x1nuS4oiIFSblyU9uO9veYWPwfNiGvZmQXk6f3DM15coMy9gfvC8zV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201418281</pqid></control><display><type>article</type><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</creator><creatorcontrib>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</creatorcontrib><description>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0703887104</identifier><identifier>PMID: 17573528</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Base Sequence ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Sciences ; Chimeras ; Ciliophora - genetics ; Codon, Terminator ; Codons ; Decryption ; Eukaryotes ; Eukaryotic cells ; Genetic vectors ; Genomics ; Humans ; Life Sciences ; Omnipotence ; Paramecium ; Paramecium - genetics ; Peptide Termination Factors - genetics ; Peptide Termination Factors - physiology ; Plasmids ; Protein Biosynthesis - genetics ; Proteins ; Protozoa ; Protozoan Proteins - genetics ; Protozoan Proteins - physiology ; Recombinant Fusion Proteins ; Ribosomes ; Stop codon ; Stylonychia ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10824-10829</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 26, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</citedby><cites>FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436023$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436023$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17573528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00189627$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lekomtsev, Sergey</creatorcontrib><creatorcontrib>Kolosov, Petr</creatorcontrib><creatorcontrib>Bidou, Laure</creatorcontrib><creatorcontrib>Frolova, Ludmila</creatorcontrib><creatorcontrib>Rousset, Jean-Pierre</creatorcontrib><creatorcontrib>Kisselev, Lev</creatorcontrib><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Chimeras</subject><subject>Ciliophora - genetics</subject><subject>Codon, Terminator</subject><subject>Codons</subject><subject>Decryption</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Genetic vectors</subject><subject>Genomics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Omnipotence</subject><subject>Paramecium</subject><subject>Paramecium - genetics</subject><subject>Peptide Termination Factors - genetics</subject><subject>Peptide Termination Factors - physiology</subject><subject>Plasmids</subject><subject>Protein Biosynthesis - genetics</subject><subject>Proteins</subject><subject>Protozoa</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - physiology</subject><subject>Recombinant Fusion Proteins</subject><subject>Ribosomes</subject><subject>Stop codon</subject><subject>Stylonychia</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhzAlkcUDikHb8Ece5IFULS5EWgcpythzHZrNK4mAnFfvv8TarLvTCwZqR55l3NPMi9JLABYGCXQ69jhdQAJOyIMAfoQWBkmSCl_AYLQBokUlO-Rl6FuMOAMpcwlN0Roq8YDmVCzR8aJyzwfYj_uJrG7F3-PvoB7z0te_xjY1jaMzYpLza43FrU3Xf-n5vto3Guq_xNx10Z00zddjerAjeBN3HVt-1bGzomn7OV9qMPsTn6InTbbQvjvEc_Vh93Cyvs_XXT5-XV-vM5IKPmYNSFJUuKym4YdbUwlbghJDMVryyrLY8dySvmWMCeO3S05o6yI2pDNWCnaP3s-4wVZ2tTdow6FYNoel02CuvG_VvpW-26qe_VaQETkSeBN7NAtsHbddXa3X4AyCyFLS4JYl9exwW_K8p3Ux1TTS2bXVv_RSTpihpAWUC3zwAd34KfTqEokA4kVQe1C5nyAQfY7DufjwBdbBdHWxXJ9tTx-u_lz3xR59Py9x1nuS4oiIFSblyU9uO9veYWPwfNiGvZmQXk6f3DM15coMy9gfvC8zV</recordid><startdate>20070626</startdate><enddate>20070626</enddate><creator>Lekomtsev, Sergey</creator><creator>Kolosov, Petr</creator><creator>Bidou, Laure</creator><creator>Frolova, Ludmila</creator><creator>Rousset, Jean-Pierre</creator><creator>Kisselev, Lev</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20070626</creationdate><title>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</title><author>Lekomtsev, Sergey ; Kolosov, Petr ; Bidou, Laure ; Frolova, Ludmila ; Rousset, Jean-Pierre ; Kisselev, Lev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-f0967ba9b864c3ecd6eb0f6683eb4be3de45f15d3f3604df04daa2f05ccbc2a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Chimeras</topic><topic>Ciliophora - genetics</topic><topic>Codon, Terminator</topic><topic>Codons</topic><topic>Decryption</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Genetic vectors</topic><topic>Genomics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Omnipotence</topic><topic>Paramecium</topic><topic>Paramecium - genetics</topic><topic>Peptide Termination Factors - genetics</topic><topic>Peptide Termination Factors - physiology</topic><topic>Plasmids</topic><topic>Protein Biosynthesis - genetics</topic><topic>Proteins</topic><topic>Protozoa</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - physiology</topic><topic>Recombinant Fusion Proteins</topic><topic>Ribosomes</topic><topic>Stop codon</topic><topic>Stylonychia</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lekomtsev, Sergey</creatorcontrib><creatorcontrib>Kolosov, Petr</creatorcontrib><creatorcontrib>Bidou, Laure</creatorcontrib><creatorcontrib>Frolova, Ludmila</creatorcontrib><creatorcontrib>Rousset, Jean-Pierre</creatorcontrib><creatorcontrib>Kisselev, Lev</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lekomtsev, Sergey</au><au>Kolosov, Petr</au><au>Bidou, Laure</au><au>Frolova, Ludmila</au><au>Rousset, Jean-Pierre</au><au>Kisselev, Lev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-26</date><risdate>2007</risdate><volume>104</volume><issue>26</issue><spage>10824</spage><epage>10829</epage><pages>10824-10829</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In universal-code eukaryotes, a single-translation termination factor, eukaryote class-1 polypeptide release factor (eRF1), decodes the three stop codons: UAA, UAG, and UGA. In some ciliates, like Stylonychia and Paramecium, eRF1s exhibit UGA-only decoding specificity, whereas UAG and UAA are reassigned as sense codons. Because variant-code ciliates may have evolved from universal-code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of the protein. Using both in vitro and in vivo assays, we show here that chimeric molecules composed of the N-terminal domain of Stylonychia eRF1 fused to the core domain (MC domain) of human eRF1 retained specificity toward UGA; this unambiguously associates eRF1 stop codon specificity to the nature of its N-terminal domain. Functional analysis of eRF1 chimeras constructed by swapping ciliate N-terminal domain sequences with the matching ones from the human protein highlighted the crucial role of the tripeptide QFM in restricting Stylonychia eRF1 specificity toward UGA. Using the site-directed mutagenesis, we show that Paramecium eRF1 specificity toward UGA resides within the NIKS (amino acids 61-64) and YxCxxxF (amino acids 124-131) motifs. Thus, we establish that eRF1 from two different ciliates relies on different molecular mechanisms to achieve specificity toward the UGA stop codon. This finding suggests that eRF1 restriction of specificity to only UGA might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UAG and UAA to sense codons.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17573528</pmid><doi>10.1073/pnas.0703887104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (26), p.10824-10829 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_104_26_10824_fulltext |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Animals Base Sequence Biochemistry Biochemistry, Molecular Biology Biological Sciences Chimeras Ciliophora - genetics Codon, Terminator Codons Decryption Eukaryotes Eukaryotic cells Genetic vectors Genomics Humans Life Sciences Omnipotence Paramecium Paramecium - genetics Peptide Termination Factors - genetics Peptide Termination Factors - physiology Plasmids Protein Biosynthesis - genetics Proteins Protozoa Protozoan Proteins - genetics Protozoan Proteins - physiology Recombinant Fusion Proteins Ribosomes Stop codon Stylonychia Substrate Specificity |
title | Different Modes of Stop Codon Restriction by the Stylonychia and Paramecium eRF1 Translation Termination Factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20Modes%20of%20Stop%20Codon%20Restriction%20by%20the%20Stylonychia%20and%20Paramecium%20eRF1%20Translation%20Termination%20Factors&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lekomtsev,%20Sergey&rft.date=2007-06-26&rft.volume=104&rft.issue=26&rft.spage=10824&rft.epage=10829&rft.pages=10824-10829&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0703887104&rft_dat=%3Cjstor_pnas_%3E25436023%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201418281&rft_id=info:pmid/17573528&rft_jstor_id=25436023&rfr_iscdi=true |