Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity

To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (52), p.18896-18901
Hauptverfasser: Kim C. Giese, Eman Basha, Belmund Y. Catague, Vierling, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18901
container_issue 52
container_start_page 18896
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Kim C. Giese
Eman Basha
Belmund Y. Catague
Vierling, Elizabeth
description To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.
doi_str_mv 10.1073/pnas.0506169103
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_52_18896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152537</jstor_id><sourcerecordid>4152537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</originalsourceid><addsrcrecordid>eNqFkVFrFDEUhYModq0--yISfBOc9iaZyUxehLJsbaGo0PocsjM37qyzyTbJLPYP-LvNuEtXn4SQwM13z7ncQ8hrBmcManG-dSaeQQWSScVAPCEzBooVslTwlMwAeF00JS9PyIsY1wCgqgaekxMmhawEUzPya7HrO3QtUusDNY4uYkSXejPQy9G1qfeOekvTCulneodh07sxThVDbzdmGOgVmkRvV779Qb8Gn7B3NJ9dv_Mf6LXrcIv5cmlq-VNPwdP5ymwxeIf0Ijvk2sNL8syaIeKrw3tKvl0u7uZXxc2XT9fzi5uiLVWTCqkEk4gKy8YCWN7VnQQjGa_Bdkss26arltayuuMKUAksGQNolO1w2VpTilPyca-7HZcb7No8WTCD3oZ-Y8KD9qbX__64fqW_-51mgmdrlgXeHQSCvx8xJr32Y3B5Zs2BiSove3I530Nt8DEGtI8GDPSUm55y08fccsfbv-c68oegMkAPwNR5lOO64po1jZIZef8fRNtxGBL-TJl9s2fXMfnwCJes4pWoxW_-Brfj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201354244</pqid></control><display><type>article</type><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</creator><creatorcontrib>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</creatorcontrib><description>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0506169103</identifier><identifier>PMID: 16365319</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - physiology ; Biochemistry ; Biological Sciences ; Chromatography ; Codon ; Crystallins - chemistry ; Dimerization ; Dimers ; Elution ; Escherichia coli - metabolism ; Gene Deletion ; Genetic mutation ; Heat ; Heat tolerance ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - physiology ; Hot Temperature ; Luciferases - metabolism ; Molecular Chaperones - chemistry ; Molecular Sequence Data ; Mutant proteins ; Mutation ; Mutation, Missense ; Oligomers ; Plasmids - metabolism ; Protein refolding ; Protein Structure, Tertiary ; Proteins ; Proteins - chemistry ; Synechocystis - metabolism ; Temperature ; Time Factors ; Viability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (52), p.18896-18901</ispartof><rights>Copyright 1993-2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 27, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</citedby><cites>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16365319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim C. Giese</creatorcontrib><creatorcontrib>Eman Basha</creatorcontrib><creatorcontrib>Belmund Y. Catague</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - physiology</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chromatography</subject><subject>Codon</subject><subject>Crystallins - chemistry</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Elution</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Deletion</subject><subject>Genetic mutation</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Hot Temperature</subject><subject>Luciferases - metabolism</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Mutant proteins</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Oligomers</subject><subject>Plasmids - metabolism</subject><subject>Protein refolding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Synechocystis - metabolism</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Viability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVFrFDEUhYModq0--yISfBOc9iaZyUxehLJsbaGo0PocsjM37qyzyTbJLPYP-LvNuEtXn4SQwM13z7ncQ8hrBmcManG-dSaeQQWSScVAPCEzBooVslTwlMwAeF00JS9PyIsY1wCgqgaekxMmhawEUzPya7HrO3QtUusDNY4uYkSXejPQy9G1qfeOekvTCulneodh07sxThVDbzdmGOgVmkRvV779Qb8Gn7B3NJ9dv_Mf6LXrcIv5cmlq-VNPwdP5ymwxeIf0Ijvk2sNL8syaIeKrw3tKvl0u7uZXxc2XT9fzi5uiLVWTCqkEk4gKy8YCWN7VnQQjGa_Bdkss26arltayuuMKUAksGQNolO1w2VpTilPyca-7HZcb7No8WTCD3oZ-Y8KD9qbX__64fqW_-51mgmdrlgXeHQSCvx8xJr32Y3B5Zs2BiSove3I530Nt8DEGtI8GDPSUm55y08fccsfbv-c68oegMkAPwNR5lOO64po1jZIZef8fRNtxGBL-TJl9s2fXMfnwCJes4pWoxW_-Brfj</recordid><startdate>20051227</startdate><enddate>20051227</enddate><creator>Kim C. Giese</creator><creator>Eman Basha</creator><creator>Belmund Y. Catague</creator><creator>Vierling, Elizabeth</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20051227</creationdate><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><author>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - physiology</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chromatography</topic><topic>Codon</topic><topic>Crystallins - chemistry</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Elution</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Deletion</topic><topic>Genetic mutation</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Hot Temperature</topic><topic>Luciferases - metabolism</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Mutant proteins</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Oligomers</topic><topic>Plasmids - metabolism</topic><topic>Protein refolding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Synechocystis - metabolism</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim C. Giese</creatorcontrib><creatorcontrib>Eman Basha</creatorcontrib><creatorcontrib>Belmund Y. Catague</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim C. Giese</au><au>Eman Basha</au><au>Belmund Y. Catague</au><au>Vierling, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-12-27</date><risdate>2005</risdate><volume>102</volume><issue>52</issue><spage>18896</spage><epage>18901</epage><pages>18896-18901</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16365319</pmid><doi>10.1073/pnas.0506169103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (52), p.18896-18901
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_102_52_18896
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacterial Proteins - chemistry
Bacterial Proteins - physiology
Biochemistry
Biological Sciences
Chromatography
Codon
Crystallins - chemistry
Dimerization
Dimers
Elution
Escherichia coli - metabolism
Gene Deletion
Genetic mutation
Heat
Heat tolerance
Heat-Shock Proteins - chemistry
Heat-Shock Proteins - physiology
Hot Temperature
Luciferases - metabolism
Molecular Chaperones - chemistry
Molecular Sequence Data
Mutant proteins
Mutation
Mutation, Missense
Oligomers
Plasmids - metabolism
Protein refolding
Protein Structure, Tertiary
Proteins
Proteins - chemistry
Synechocystis - metabolism
Temperature
Time Factors
Viability
title Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20Essential%20Function%20of%20the%20N%20Terminus%20of%20a%20Small%20Heat%20Shock%20Protein%20in%20vivo,%20Independent%20of%20in%20vitro%20Chaperone%20Activity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim%20C.%20Giese&rft.date=2005-12-27&rft.volume=102&rft.issue=52&rft.spage=18896&rft.epage=18901&rft.pages=18896-18901&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0506169103&rft_dat=%3Cjstor_pnas_%3E4152537%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201354244&rft_id=info:pmid/16365319&rft_jstor_id=4152537&rfr_iscdi=true