Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity
To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (52), p.18896-18901 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18901 |
---|---|
container_issue | 52 |
container_start_page | 18896 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Kim C. Giese Eman Basha Belmund Y. Catague Vierling, Elizabeth |
description | To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action. |
doi_str_mv | 10.1073/pnas.0506169103 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_52_18896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152537</jstor_id><sourcerecordid>4152537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</originalsourceid><addsrcrecordid>eNqFkVFrFDEUhYModq0--yISfBOc9iaZyUxehLJsbaGo0PocsjM37qyzyTbJLPYP-LvNuEtXn4SQwM13z7ncQ8hrBmcManG-dSaeQQWSScVAPCEzBooVslTwlMwAeF00JS9PyIsY1wCgqgaekxMmhawEUzPya7HrO3QtUusDNY4uYkSXejPQy9G1qfeOekvTCulneodh07sxThVDbzdmGOgVmkRvV779Qb8Gn7B3NJ9dv_Mf6LXrcIv5cmlq-VNPwdP5ymwxeIf0Ijvk2sNL8syaIeKrw3tKvl0u7uZXxc2XT9fzi5uiLVWTCqkEk4gKy8YCWN7VnQQjGa_Bdkss26arltayuuMKUAksGQNolO1w2VpTilPyca-7HZcb7No8WTCD3oZ-Y8KD9qbX__64fqW_-51mgmdrlgXeHQSCvx8xJr32Y3B5Zs2BiSove3I530Nt8DEGtI8GDPSUm55y08fccsfbv-c68oegMkAPwNR5lOO64po1jZIZef8fRNtxGBL-TJl9s2fXMfnwCJes4pWoxW_-Brfj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201354244</pqid></control><display><type>article</type><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</creator><creatorcontrib>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</creatorcontrib><description>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0506169103</identifier><identifier>PMID: 16365319</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - chemistry ; Bacterial Proteins - physiology ; Biochemistry ; Biological Sciences ; Chromatography ; Codon ; Crystallins - chemistry ; Dimerization ; Dimers ; Elution ; Escherichia coli - metabolism ; Gene Deletion ; Genetic mutation ; Heat ; Heat tolerance ; Heat-Shock Proteins - chemistry ; Heat-Shock Proteins - physiology ; Hot Temperature ; Luciferases - metabolism ; Molecular Chaperones - chemistry ; Molecular Sequence Data ; Mutant proteins ; Mutation ; Mutation, Missense ; Oligomers ; Plasmids - metabolism ; Protein refolding ; Protein Structure, Tertiary ; Proteins ; Proteins - chemistry ; Synechocystis - metabolism ; Temperature ; Time Factors ; Viability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (52), p.18896-18901</ispartof><rights>Copyright 1993-2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 27, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</citedby><cites>FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152537$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152537$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16365319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim C. Giese</creatorcontrib><creatorcontrib>Eman Basha</creatorcontrib><creatorcontrib>Belmund Y. Catague</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - physiology</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chromatography</subject><subject>Codon</subject><subject>Crystallins - chemistry</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Elution</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Deletion</subject><subject>Genetic mutation</subject><subject>Heat</subject><subject>Heat tolerance</subject><subject>Heat-Shock Proteins - chemistry</subject><subject>Heat-Shock Proteins - physiology</subject><subject>Hot Temperature</subject><subject>Luciferases - metabolism</subject><subject>Molecular Chaperones - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Mutant proteins</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Oligomers</subject><subject>Plasmids - metabolism</subject><subject>Protein refolding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Synechocystis - metabolism</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Viability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVFrFDEUhYModq0--yISfBOc9iaZyUxehLJsbaGo0PocsjM37qyzyTbJLPYP-LvNuEtXn4SQwM13z7ncQ8hrBmcManG-dSaeQQWSScVAPCEzBooVslTwlMwAeF00JS9PyIsY1wCgqgaekxMmhawEUzPya7HrO3QtUusDNY4uYkSXejPQy9G1qfeOekvTCulneodh07sxThVDbzdmGOgVmkRvV779Qb8Gn7B3NJ9dv_Mf6LXrcIv5cmlq-VNPwdP5ymwxeIf0Ijvk2sNL8syaIeKrw3tKvl0u7uZXxc2XT9fzi5uiLVWTCqkEk4gKy8YCWN7VnQQjGa_Bdkss26arltayuuMKUAksGQNolO1w2VpTilPyca-7HZcb7No8WTCD3oZ-Y8KD9qbX__64fqW_-51mgmdrlgXeHQSCvx8xJr32Y3B5Zs2BiSove3I530Nt8DEGtI8GDPSUm55y08fccsfbv-c68oegMkAPwNR5lOO64po1jZIZef8fRNtxGBL-TJl9s2fXMfnwCJes4pWoxW_-Brfj</recordid><startdate>20051227</startdate><enddate>20051227</enddate><creator>Kim C. Giese</creator><creator>Eman Basha</creator><creator>Belmund Y. Catague</creator><creator>Vierling, Elizabeth</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20051227</creationdate><title>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</title><author>Kim C. Giese ; Eman Basha ; Belmund Y. Catague ; Vierling, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-69316ee9e48f00f2d7d60a61270fdbe4c8d5bff17d290e93e4110089fdebcfa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - physiology</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chromatography</topic><topic>Codon</topic><topic>Crystallins - chemistry</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Elution</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Deletion</topic><topic>Genetic mutation</topic><topic>Heat</topic><topic>Heat tolerance</topic><topic>Heat-Shock Proteins - chemistry</topic><topic>Heat-Shock Proteins - physiology</topic><topic>Hot Temperature</topic><topic>Luciferases - metabolism</topic><topic>Molecular Chaperones - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Mutant proteins</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Oligomers</topic><topic>Plasmids - metabolism</topic><topic>Protein refolding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Synechocystis - metabolism</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim C. Giese</creatorcontrib><creatorcontrib>Eman Basha</creatorcontrib><creatorcontrib>Belmund Y. Catague</creatorcontrib><creatorcontrib>Vierling, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim C. Giese</au><au>Eman Basha</au><au>Belmund Y. Catague</au><au>Vierling, Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-12-27</date><risdate>2005</risdate><volume>102</volume><issue>52</issue><spage>18896</spage><epage>18901</epage><pages>18896-18901</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To investigate the mechanism of small heat shock protein (sHsp) function, unbiased by current models of sHsp chaperone activity, we performed a screen for mutations of Synechocystis Hsp16.6 that reduced the ability of the protein to provide thermotolerance in vivo. Missense mutations at 17 positions throughout the protein and a C-terminal truncation of 5 aa were identified, representing the largest collection of sHsp mutants impaired in function in vivo. Ten mutant proteins were purified and tested for alterations in native oligomeric structure and in vitro chaperone activity. These biochemical assays separated the mutants into two groups. The C-terminal truncation and six mutations in the α-crystallin domain destabilized the sHsp oligomer and reduced in vitro chaperone activity. In contrast, the other three mutations had little effect on oligomer stability or chaperone activity in vitro. These mutations were clustered in the N terminus of Hsp16.6, pointing to a previously unrecognized, important function for this evolutionary variable domain. Furthermore, the fact that the N-terminal mutations were impaired in function in vivo, but active as chaperones in vitro, indicates that current biochemical assays do not adequately measure essential features of the sHsp mechanism of action.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16365319</pmid><doi>10.1073/pnas.0506169103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (52), p.18896-18901 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_102_52_18896 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Bacterial Proteins - chemistry Bacterial Proteins - physiology Biochemistry Biological Sciences Chromatography Codon Crystallins - chemistry Dimerization Dimers Elution Escherichia coli - metabolism Gene Deletion Genetic mutation Heat Heat tolerance Heat-Shock Proteins - chemistry Heat-Shock Proteins - physiology Hot Temperature Luciferases - metabolism Molecular Chaperones - chemistry Molecular Sequence Data Mutant proteins Mutation Mutation, Missense Oligomers Plasmids - metabolism Protein refolding Protein Structure, Tertiary Proteins Proteins - chemistry Synechocystis - metabolism Temperature Time Factors Viability |
title | Evidence for an Essential Function of the N Terminus of a Small Heat Shock Protein in vivo, Independent of in vitro Chaperone Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20an%20Essential%20Function%20of%20the%20N%20Terminus%20of%20a%20Small%20Heat%20Shock%20Protein%20in%20vivo,%20Independent%20of%20in%20vitro%20Chaperone%20Activity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim%20C.%20Giese&rft.date=2005-12-27&rft.volume=102&rft.issue=52&rft.spage=18896&rft.epage=18901&rft.pages=18896-18901&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0506169103&rft_dat=%3Cjstor_pnas_%3E4152537%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201354244&rft_id=info:pmid/16365319&rft_jstor_id=4152537&rfr_iscdi=true |