Cytoskeletal Rearrangements and Cell Extensions Induced by the US3 Kinase of an Alphaherpesvirus Are Associated with Enhanced Spread

The US3 protein is a viral kinase that is conserved among the Alphaherpesvirinae. Here, we show that US3 of the swine alphaherpesvirus pseudorabies virus causes dramatic alterations in the cytoskeleton, resulting in the formation of long actin- and microtubule-containing cell projections in infected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-06, Vol.102 (25), p.8990-8995
Hauptverfasser: Favoreel, Herman W., Van Minnebruggen, Geert, Adriaensen, Dirk, Nauwynck, Hans J., Spear, Patricia G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The US3 protein is a viral kinase that is conserved among the Alphaherpesvirinae. Here, we show that US3 of the swine alphaherpesvirus pseudorabies virus causes dramatic alterations in the cytoskeleton, resulting in the formation of long actin- and microtubule-containing cell projections in infected and transfected cells. Analysis with a GFP-labeled virus showed that multiple virus particles move inside the projections toward the tip. GFP-labeled virus could also be found in the cytoplasm of neighboring cells that were in contact with the projections. In addition, projection formation could be inhibited by using the actin-stabilizing drug jasplakinolide and could be induced by using the Rho kinase inhibitor Y27632. Analyzing the effect of these drugs on intercellular virus spread indicated that the observed US3-induced alterations in the host cytoskeleton are associated with enhanced intercellular virus spread, thereby suggesting a previously undescribed aspect of alphaherpesvirus spread.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0409099102