Nonviremic transmission of West Nile virus

West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with >15,000 human cases and >600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-06, Vol.102 (25), p.8871-8874
Hauptverfasser: Higgs, S, Schneider, B.S, Vanlandingham, D.L, Klingler, K.A, Gould, E.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8874
container_issue 25
container_start_page 8871
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Higgs, S
Schneider, B.S
Vanlandingham, D.L
Klingler, K.A
Gould, E.A
description West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with >15,000 human cases and >600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected "recipient" mosquitoes on naive mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America.
doi_str_mv 10.1073/pnas.0503835102
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_25_8871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375629</jstor_id><sourcerecordid>3375629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-acdf0e48039c3ac9c4255abbc9ef5da9e959860d6e08e9fcca085e6777d0e45d3</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxC0EotvCmQuCiANCSGnfs_P8cUFCFV9SVQ5QcbS8jlOyysaLnVT0v8erXXWBA5x88G_GMx7GniCcIihxthldPgUCoQUh8HtsgWCwlo2B-2wBwFWtG94cseOcVwBgSMNDdoRkCBtUC_b6Mo43fQrr3ldTcmNe9zn3caxiV30Leaou-yFUhZjzI_agc0MOj_fnCbt6_-7r-cf64vOHT-dvL2pPhFPtfNtBaDQI44XzxjecyC2X3oSOWmeCIaMltDKADqbz3oGmIJVSbZFRK07Ym53vZl6uQ-vDWIINdpP6tUu3Nrre_nkz9t_tdbyxiKSATDF4uTdI8cdcSthSyodhcGOIc7ZSGUlK8v-CqKSQnLCAL_4CV3FOY_kFywG5kRpFgc52kE8x5xS6u8gIdruW3a5lD2sVxbPfmx74_TwFeL4HtsqDHbecrNZqm-zVvwnbzcMwhZ9TQZ_u0FWeYrpjhVAkuTm81blo3XXqs736UtoJQMBiqMQvSta7MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201296813</pqid></control><display><type>article</type><title>Nonviremic transmission of West Nile virus</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Higgs, S ; Schneider, B.S ; Vanlandingham, D.L ; Klingler, K.A ; Gould, E.A</creator><creatorcontrib>Higgs, S ; Schneider, B.S ; Vanlandingham, D.L ; Klingler, K.A ; Gould, E.A</creatorcontrib><description>West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with &gt;15,000 human cases and &gt;600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected "recipient" mosquitoes on naive mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0503835102</identifier><identifier>PMID: 15951417</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal Feed ; Animal feeding behavior ; Animals ; Arthropods ; Biological Sciences ; Birds ; Blood ; Culex - virology ; Culex pipiens ; Culex quinquefasciatus ; Culicidae ; Disease transmission ; hematophagy ; Humans ; Infections ; insect vectors ; mice ; Mosquitoes ; Mosquitos ; Passeriformes - virology ; United States - epidemiology ; Vertebrates ; Viremia ; Viruses ; West Nile Fever - epidemiology ; West Nile Fever - mortality ; West Nile Fever - transmission ; West Nile virus ; West Nile virus - isolation &amp; purification ; West Nile virus - pathogenicity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-06, Vol.102 (25), p.8871-8874</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 21, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-acdf0e48039c3ac9c4255abbc9ef5da9e959860d6e08e9fcca085e6777d0e45d3</citedby><cites>FETCH-LOGICAL-c551t-acdf0e48039c3ac9c4255abbc9ef5da9e959860d6e08e9fcca085e6777d0e45d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375629$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375629$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15951417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higgs, S</creatorcontrib><creatorcontrib>Schneider, B.S</creatorcontrib><creatorcontrib>Vanlandingham, D.L</creatorcontrib><creatorcontrib>Klingler, K.A</creatorcontrib><creatorcontrib>Gould, E.A</creatorcontrib><title>Nonviremic transmission of West Nile virus</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with &gt;15,000 human cases and &gt;600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected "recipient" mosquitoes on naive mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America.</description><subject>Animal Feed</subject><subject>Animal feeding behavior</subject><subject>Animals</subject><subject>Arthropods</subject><subject>Biological Sciences</subject><subject>Birds</subject><subject>Blood</subject><subject>Culex - virology</subject><subject>Culex pipiens</subject><subject>Culex quinquefasciatus</subject><subject>Culicidae</subject><subject>Disease transmission</subject><subject>hematophagy</subject><subject>Humans</subject><subject>Infections</subject><subject>insect vectors</subject><subject>mice</subject><subject>Mosquitoes</subject><subject>Mosquitos</subject><subject>Passeriformes - virology</subject><subject>United States - epidemiology</subject><subject>Vertebrates</subject><subject>Viremia</subject><subject>Viruses</subject><subject>West Nile Fever - epidemiology</subject><subject>West Nile Fever - mortality</subject><subject>West Nile Fever - transmission</subject><subject>West Nile virus</subject><subject>West Nile virus - isolation &amp; purification</subject><subject>West Nile virus - pathogenicity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAUxC0EotvCmQuCiANCSGnfs_P8cUFCFV9SVQ5QcbS8jlOyysaLnVT0v8erXXWBA5x88G_GMx7GniCcIihxthldPgUCoQUh8HtsgWCwlo2B-2wBwFWtG94cseOcVwBgSMNDdoRkCBtUC_b6Mo43fQrr3ldTcmNe9zn3caxiV30Leaou-yFUhZjzI_agc0MOj_fnCbt6_-7r-cf64vOHT-dvL2pPhFPtfNtBaDQI44XzxjecyC2X3oSOWmeCIaMltDKADqbz3oGmIJVSbZFRK07Ym53vZl6uQ-vDWIINdpP6tUu3Nrre_nkz9t_tdbyxiKSATDF4uTdI8cdcSthSyodhcGOIc7ZSGUlK8v-CqKSQnLCAL_4CV3FOY_kFywG5kRpFgc52kE8x5xS6u8gIdruW3a5lD2sVxbPfmx74_TwFeL4HtsqDHbecrNZqm-zVvwnbzcMwhZ9TQZ_u0FWeYrpjhVAkuTm81blo3XXqs736UtoJQMBiqMQvSta7MA</recordid><startdate>20050621</startdate><enddate>20050621</enddate><creator>Higgs, S</creator><creator>Schneider, B.S</creator><creator>Vanlandingham, D.L</creator><creator>Klingler, K.A</creator><creator>Gould, E.A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050621</creationdate><title>Nonviremic transmission of West Nile virus</title><author>Higgs, S ; Schneider, B.S ; Vanlandingham, D.L ; Klingler, K.A ; Gould, E.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-acdf0e48039c3ac9c4255abbc9ef5da9e959860d6e08e9fcca085e6777d0e45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal Feed</topic><topic>Animal feeding behavior</topic><topic>Animals</topic><topic>Arthropods</topic><topic>Biological Sciences</topic><topic>Birds</topic><topic>Blood</topic><topic>Culex - virology</topic><topic>Culex pipiens</topic><topic>Culex quinquefasciatus</topic><topic>Culicidae</topic><topic>Disease transmission</topic><topic>hematophagy</topic><topic>Humans</topic><topic>Infections</topic><topic>insect vectors</topic><topic>mice</topic><topic>Mosquitoes</topic><topic>Mosquitos</topic><topic>Passeriformes - virology</topic><topic>United States - epidemiology</topic><topic>Vertebrates</topic><topic>Viremia</topic><topic>Viruses</topic><topic>West Nile Fever - epidemiology</topic><topic>West Nile Fever - mortality</topic><topic>West Nile Fever - transmission</topic><topic>West Nile virus</topic><topic>West Nile virus - isolation &amp; purification</topic><topic>West Nile virus - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higgs, S</creatorcontrib><creatorcontrib>Schneider, B.S</creatorcontrib><creatorcontrib>Vanlandingham, D.L</creatorcontrib><creatorcontrib>Klingler, K.A</creatorcontrib><creatorcontrib>Gould, E.A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higgs, S</au><au>Schneider, B.S</au><au>Vanlandingham, D.L</au><au>Klingler, K.A</au><au>Gould, E.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonviremic transmission of West Nile virus</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-06-21</date><risdate>2005</risdate><volume>102</volume><issue>25</issue><spage>8871</spage><epage>8874</epage><pages>8871-8874</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with &gt;15,000 human cases and &gt;600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected "recipient" mosquitoes on naive mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15951417</pmid><doi>10.1073/pnas.0503835102</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-06, Vol.102 (25), p.8871-8874
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_102_25_8871
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animal Feed
Animal feeding behavior
Animals
Arthropods
Biological Sciences
Birds
Blood
Culex - virology
Culex pipiens
Culex quinquefasciatus
Culicidae
Disease transmission
hematophagy
Humans
Infections
insect vectors
mice
Mosquitoes
Mosquitos
Passeriformes - virology
United States - epidemiology
Vertebrates
Viremia
Viruses
West Nile Fever - epidemiology
West Nile Fever - mortality
West Nile Fever - transmission
West Nile virus
West Nile virus - isolation & purification
West Nile virus - pathogenicity
title Nonviremic transmission of West Nile virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonviremic%20transmission%20of%20West%20Nile%20virus&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Higgs,%20S&rft.date=2005-06-21&rft.volume=102&rft.issue=25&rft.spage=8871&rft.epage=8874&rft.pages=8871-8874&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0503835102&rft_dat=%3Cjstor_pnas_%3E3375629%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201296813&rft_id=info:pmid/15951417&rft_jstor_id=3375629&rfr_iscdi=true