Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress

D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-11, Vol.101 (44), p.15805-15810
Hauptverfasser: Xu, P, Rogers, S.J, Roossinck, M.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15810
container_issue 44
container_start_page 15805
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Xu, P
Rogers, S.J
Roossinck, M.J
description D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. High expression of bcl-xL or ced-9 affected plant growth and seed development. Inoculation of seedlings with CMV/D satRNA at T1 and T2 generations resulted in delayed cell-death symptoms or absence of symptoms. The degree of symptom suppression was correlated with increasing expression levels of the transgenes. Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. More than 80% of the bcl-xL and ced-9 T1 transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. Total RNA extracted from surviving plants contained D satRNA, indicating systemic accumulation of D satRNA. Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. Hence, expression of these animal antiapoptotic genes improved plant survival under abiotic or biotic stress.
doi_str_mv 10.1073/pnas.0407094101
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_44_15805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373718</jstor_id><sourcerecordid>3373718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-5f115e087f1baf32467ee7188c4b899d4676144038815ff6e197cc7a59772cc3</originalsourceid><addsrcrecordid>eNqFkk2PFCEQhjtG446jZy9GiQcTD71bNNDAwYPZrB_JJB5cz4Rm6FkmPdACvRkTf7z0zmRHveyBAKmnXqrqpapeYjjHwMnF6HU6BwocJMWAH1ULDBLXLZXwuFoANLwWtKFn1bOUtgAgmYCn1RlmDBiWclH9vtqP0abkgkehR9pnp8cw5pCdQRvrbUKdGer9qoTWyNh1LZHzKIedzgFZf6O9KUwOg43zsZzQrYt6qJ1fT4VH3poYkkt3Arpzd8opz48-r570ekj2xXFfVtefrq4vv9Srb5-_Xn5c1abUmWvWY8wsCN7jTvekoS23lmMhDO2ElOtybzGlQITArO9biyU3hmsmOW-MIcvqw0F2nLqdXRvrcylQjdHtdPylgnbq34h3N2oTbhVrqGCi5L875sfwc7Ipq51Lxg6D9jZMSbUcSEMwPAhizlsgdFZ8-x-4DVP0ZQaqAUwkmdeyujhA8_xStP19xRjU7L6a3Vcn90vG678bPfFHuwvw_gjMmSc5rCgtlACm-mkYst3nwqIH2IK8OiDblEO8ZwjhpNhTwm8O4V4HpTfRJfXj-9xf-YeilQ2QP3ie15I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201393139</pqid></control><display><type>article</type><title>Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Xu, P ; Rogers, S.J ; Roossinck, M.J</creator><creatorcontrib>Xu, P ; Rogers, S.J ; Roossinck, M.J</creatorcontrib><description>D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. High expression of bcl-xL or ced-9 affected plant growth and seed development. Inoculation of seedlings with CMV/D satRNA at T1 and T2 generations resulted in delayed cell-death symptoms or absence of symptoms. The degree of symptom suppression was correlated with increasing expression levels of the transgenes. Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. More than 80% of the bcl-xL and ced-9 T1 transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. Total RNA extracted from surviving plants contained D satRNA, indicating systemic accumulation of D satRNA. Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. Hence, expression of these animal antiapoptotic genes improved plant survival under abiotic or biotic stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0407094101</identifier><identifier>PMID: 15505199</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Abiotic stress ; Agrobacterium tumefaciens - genetics ; Animal cells ; Animals ; Apoptosis ; Apoptosis Regulatory Proteins ; Base Sequence ; bcl-X Protein ; bcl-xL gene ; Biological Sciences ; Caenorhabditis elegans Proteins - genetics ; ced-9 gene ; Cell death ; cold stress ; Cucumber mosaic virus ; Cucumber Mosaic Virus Satellite - genetics ; Cucumovirus - genetics ; Cucumovirus - pathogenicity ; disease resistance ; DNA, Viral - genetics ; Gene expression ; Genes ; Inoculation ; Leaves ; Lycopersicon esculentum ; Plant Diseases - genetics ; Plant Diseases - virology ; plant growth ; Plants ; Plants, Genetically Modified ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins c-bcl-2 - genetics ; RNA ; satellite RNA ; Solanum lycopersicum - cytology ; Solanum lycopersicum - genetics ; Solanum lycopersicum - growth &amp; development ; Solanum lycopersicum - virology ; Solanum lycopersicum var. lycopersicum ; Tomatoes ; Transformation, Genetic ; Transgenes ; Transgenic plants ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-11, Vol.101 (44), p.15805-15810</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 2, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-5f115e087f1baf32467ee7188c4b899d4676144038815ff6e197cc7a59772cc3</citedby><cites>FETCH-LOGICAL-c550t-5f115e087f1baf32467ee7188c4b899d4676144038815ff6e197cc7a59772cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373718$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373718$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15505199$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, P</creatorcontrib><creatorcontrib>Rogers, S.J</creatorcontrib><creatorcontrib>Roossinck, M.J</creatorcontrib><title>Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. High expression of bcl-xL or ced-9 affected plant growth and seed development. Inoculation of seedlings with CMV/D satRNA at T1 and T2 generations resulted in delayed cell-death symptoms or absence of symptoms. The degree of symptom suppression was correlated with increasing expression levels of the transgenes. Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. More than 80% of the bcl-xL and ced-9 T1 transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. Total RNA extracted from surviving plants contained D satRNA, indicating systemic accumulation of D satRNA. Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. Hence, expression of these animal antiapoptotic genes improved plant survival under abiotic or biotic stress.</description><subject>Abiotic stress</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Animal cells</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis Regulatory Proteins</subject><subject>Base Sequence</subject><subject>bcl-X Protein</subject><subject>bcl-xL gene</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>ced-9 gene</subject><subject>Cell death</subject><subject>cold stress</subject><subject>Cucumber mosaic virus</subject><subject>Cucumber Mosaic Virus Satellite - genetics</subject><subject>Cucumovirus - genetics</subject><subject>Cucumovirus - pathogenicity</subject><subject>disease resistance</subject><subject>DNA, Viral - genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>Lycopersicon esculentum</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - virology</subject><subject>plant growth</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>RNA</subject><subject>satellite RNA</subject><subject>Solanum lycopersicum - cytology</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum - growth &amp; development</subject><subject>Solanum lycopersicum - virology</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>Tomatoes</subject><subject>Transformation, Genetic</subject><subject>Transgenes</subject><subject>Transgenic plants</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2PFCEQhjtG446jZy9GiQcTD71bNNDAwYPZrB_JJB5cz4Rm6FkmPdACvRkTf7z0zmRHveyBAKmnXqrqpapeYjjHwMnF6HU6BwocJMWAH1ULDBLXLZXwuFoANLwWtKFn1bOUtgAgmYCn1RlmDBiWclH9vtqP0abkgkehR9pnp8cw5pCdQRvrbUKdGer9qoTWyNh1LZHzKIedzgFZf6O9KUwOg43zsZzQrYt6qJ1fT4VH3poYkkt3Arpzd8opz48-r570ekj2xXFfVtefrq4vv9Srb5-_Xn5c1abUmWvWY8wsCN7jTvekoS23lmMhDO2ElOtybzGlQITArO9biyU3hmsmOW-MIcvqw0F2nLqdXRvrcylQjdHtdPylgnbq34h3N2oTbhVrqGCi5L875sfwc7Ipq51Lxg6D9jZMSbUcSEMwPAhizlsgdFZ8-x-4DVP0ZQaqAUwkmdeyujhA8_xStP19xRjU7L6a3Vcn90vG678bPfFHuwvw_gjMmSc5rCgtlACm-mkYst3nwqIH2IK8OiDblEO8ZwjhpNhTwm8O4V4HpTfRJfXj-9xf-YeilQ2QP3ie15I</recordid><startdate>20041102</startdate><enddate>20041102</enddate><creator>Xu, P</creator><creator>Rogers, S.J</creator><creator>Roossinck, M.J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041102</creationdate><title>Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress</title><author>Xu, P ; Rogers, S.J ; Roossinck, M.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-5f115e087f1baf32467ee7188c4b899d4676144038815ff6e197cc7a59772cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Abiotic stress</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Animal cells</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis Regulatory Proteins</topic><topic>Base Sequence</topic><topic>bcl-X Protein</topic><topic>bcl-xL gene</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>ced-9 gene</topic><topic>Cell death</topic><topic>cold stress</topic><topic>Cucumber mosaic virus</topic><topic>Cucumber Mosaic Virus Satellite - genetics</topic><topic>Cucumovirus - genetics</topic><topic>Cucumovirus - pathogenicity</topic><topic>disease resistance</topic><topic>DNA, Viral - genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>Lycopersicon esculentum</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - virology</topic><topic>plant growth</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>RNA</topic><topic>satellite RNA</topic><topic>Solanum lycopersicum - cytology</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum - growth &amp; development</topic><topic>Solanum lycopersicum - virology</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>Tomatoes</topic><topic>Transformation, Genetic</topic><topic>Transgenes</topic><topic>Transgenic plants</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, P</creatorcontrib><creatorcontrib>Rogers, S.J</creatorcontrib><creatorcontrib>Roossinck, M.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, P</au><au>Rogers, S.J</au><au>Roossinck, M.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-11-02</date><risdate>2004</risdate><volume>101</volume><issue>44</issue><spage>15805</spage><epage>15810</epage><pages>15805-15810</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>D satellite RNA (satRNA) is a strain of cucumber mosaic virus (CMV) satRNA that induces an epidemic lethal disease in tomato. No natural resistance or tolerance has ever been found. Previously, we demonstrated the involvement of programmed cell death in disease development. Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. High expression of bcl-xL or ced-9 affected plant growth and seed development. Inoculation of seedlings with CMV/D satRNA at T1 and T2 generations resulted in delayed cell-death symptoms or absence of symptoms. The degree of symptom suppression was correlated with increasing expression levels of the transgenes. Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. More than 80% of the bcl-xL and ced-9 T1 transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. Total RNA extracted from surviving plants contained D satRNA, indicating systemic accumulation of D satRNA. Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. Hence, expression of these animal antiapoptotic genes improved plant survival under abiotic or biotic stress.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15505199</pmid><doi>10.1073/pnas.0407094101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-11, Vol.101 (44), p.15805-15810
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_101_44_15805
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Abiotic stress
Agrobacterium tumefaciens - genetics
Animal cells
Animals
Apoptosis
Apoptosis Regulatory Proteins
Base Sequence
bcl-X Protein
bcl-xL gene
Biological Sciences
Caenorhabditis elegans Proteins - genetics
ced-9 gene
Cell death
cold stress
Cucumber mosaic virus
Cucumber Mosaic Virus Satellite - genetics
Cucumovirus - genetics
Cucumovirus - pathogenicity
disease resistance
DNA, Viral - genetics
Gene expression
Genes
Inoculation
Leaves
Lycopersicon esculentum
Plant Diseases - genetics
Plant Diseases - virology
plant growth
Plants
Plants, Genetically Modified
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins c-bcl-2 - genetics
RNA
satellite RNA
Solanum lycopersicum - cytology
Solanum lycopersicum - genetics
Solanum lycopersicum - growth & development
Solanum lycopersicum - virology
Solanum lycopersicum var. lycopersicum
Tomatoes
Transformation, Genetic
Transgenes
Transgenic plants
Viruses
title Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20antiapoptotic%20genes%20bcl-xL%20and%20ced-9%20in%20tomato%20enhances%20tolerance%20to%20viral-induced%20necrosis%20and%20abiotic%20stress&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Xu,%20P&rft.date=2004-11-02&rft.volume=101&rft.issue=44&rft.spage=15805&rft.epage=15810&rft.pages=15805-15810&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0407094101&rft_dat=%3Cjstor_pnas_%3E3373718%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201393139&rft_id=info:pmid/15505199&rft_jstor_id=3373718&rfr_iscdi=true