Topologically Driven Swelling of a Polymer Loop

Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-09, Vol.101 (37), p.13431-13435
Hauptverfasser: Moore, Nathan T., Lua, Rhonald C., Grosberg, Alexander Y., Novikov, Sergei P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13435
container_issue 37
container_start_page 13431
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Moore, Nathan T.
Lua, Rhonald C.
Grosberg, Alexander Y.
Novikov, Sergei P.
description Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.
doi_str_mv 10.1073/pnas.0403383101
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_37_13431_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373328</jstor_id><sourcerecordid>3373328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</originalsourceid><addsrcrecordid>eNqFkEFP4zAQhS0Egi7LmcsKRXvjEDqTsWvnwGEFLItUaZFgz5aTON1UbhyctNB_j6tWdDntaQ7zvTdvHmPnCFcIksZda_or4ECkCAEP2Aghx3TCczhkI4BMpopn_IR96fs5AORCwTE7QUEckOSIjZ99552fNaVxbp3chmZl2-Tp1TrXtLPE14lJHr1bL2xIpt53X9lRbVxvz3bzlP35efd88yud_r5_uPkxTUuu8iEtRCFICFXUWSkVVlgQmTjlROa2lJZbW2QECEYVCipRosDKVpiLbCJtbumUXW99u2WxsFVp2yEYp7vQLExYa28a_XnTNn_1zK-0QCUlj_rvO33wL0vbD3rul6GNkXUWP6eYYwONt1AZfN8HW3_4I-hNv3rTr973GxUX_8ba87tCI3C5AzbKvR1qkhqJE-p66dxg34bIJv9hI_Jti8z7wYcPhuIlyhS9A9TKl_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336794</pqid></control><display><type>article</type><title>Topologically Driven Swelling of a Polymer Loop</title><source>Jstor Complete Legacy</source><source>PMC (PubMed Central)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</creator><creatorcontrib>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</creatorcontrib><description>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0403383101</identifier><identifier>PMID: 15340137</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Entropy ; Gyration ; Knots ; Mathematical triviality ; Physical Sciences ; Physics ; Polymers ; Power laws ; Probability ; Probability distributions ; Swelling ; Topological manifolds ; Topological properties ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-09, Vol.101 (37), p.13431-13435</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 14, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</citedby><cites>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15340137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Nathan T.</creatorcontrib><creatorcontrib>Lua, Rhonald C.</creatorcontrib><creatorcontrib>Grosberg, Alexander Y.</creatorcontrib><creatorcontrib>Novikov, Sergei P.</creatorcontrib><title>Topologically Driven Swelling of a Polymer Loop</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</description><subject>Entropy</subject><subject>Gyration</subject><subject>Knots</subject><subject>Mathematical triviality</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><subject>Power laws</subject><subject>Probability</subject><subject>Probability distributions</subject><subject>Swelling</subject><subject>Topological manifolds</subject><subject>Topological properties</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP4zAQhS0Egi7LmcsKRXvjEDqTsWvnwGEFLItUaZFgz5aTON1UbhyctNB_j6tWdDntaQ7zvTdvHmPnCFcIksZda_or4ECkCAEP2Aghx3TCczhkI4BMpopn_IR96fs5AORCwTE7QUEckOSIjZ99552fNaVxbp3chmZl2-Tp1TrXtLPE14lJHr1bL2xIpt53X9lRbVxvz3bzlP35efd88yud_r5_uPkxTUuu8iEtRCFICFXUWSkVVlgQmTjlROa2lJZbW2QECEYVCipRosDKVpiLbCJtbumUXW99u2WxsFVp2yEYp7vQLExYa28a_XnTNn_1zK-0QCUlj_rvO33wL0vbD3rul6GNkXUWP6eYYwONt1AZfN8HW3_4I-hNv3rTr973GxUX_8ba87tCI3C5AzbKvR1qkhqJE-p66dxg34bIJv9hI_Jti8z7wYcPhuIlyhS9A9TKl_0</recordid><startdate>20040914</startdate><enddate>20040914</enddate><creator>Moore, Nathan T.</creator><creator>Lua, Rhonald C.</creator><creator>Grosberg, Alexander Y.</creator><creator>Novikov, Sergei P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20040914</creationdate><title>Topologically Driven Swelling of a Polymer Loop</title><author>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Entropy</topic><topic>Gyration</topic><topic>Knots</topic><topic>Mathematical triviality</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><topic>Power laws</topic><topic>Probability</topic><topic>Probability distributions</topic><topic>Swelling</topic><topic>Topological manifolds</topic><topic>Topological properties</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Nathan T.</creatorcontrib><creatorcontrib>Lua, Rhonald C.</creatorcontrib><creatorcontrib>Grosberg, Alexander Y.</creatorcontrib><creatorcontrib>Novikov, Sergei P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Nathan T.</au><au>Lua, Rhonald C.</au><au>Grosberg, Alexander Y.</au><au>Novikov, Sergei P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topologically Driven Swelling of a Polymer Loop</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-09-14</date><risdate>2004</risdate><volume>101</volume><issue>37</issue><spage>13431</spage><epage>13435</epage><pages>13431-13435</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15340137</pmid><doi>10.1073/pnas.0403383101</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-09, Vol.101 (37), p.13431-13435
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_101_37_13431_fulltext
source Jstor Complete Legacy; PMC (PubMed Central); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Entropy
Gyration
Knots
Mathematical triviality
Physical Sciences
Physics
Polymers
Power laws
Probability
Probability distributions
Swelling
Topological manifolds
Topological properties
Topology
title Topologically Driven Swelling of a Polymer Loop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topologically%20Driven%20Swelling%20of%20a%20Polymer%20Loop&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Moore,%20Nathan%20T.&rft.date=2004-09-14&rft.volume=101&rft.issue=37&rft.spage=13431&rft.epage=13435&rft.pages=13431-13435&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0403383101&rft_dat=%3Cjstor_pnas_%3E3373328%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201336794&rft_id=info:pmid/15340137&rft_jstor_id=3373328&rfr_iscdi=true