Topologically Driven Swelling of a Polymer Loop
Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyra...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-09, Vol.101 (37), p.13431-13435 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13435 |
---|---|
container_issue | 37 |
container_start_page | 13431 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Moore, Nathan T. Lua, Rhonald C. Grosberg, Alexander Y. Novikov, Sergei P. |
description | Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions. |
doi_str_mv | 10.1073/pnas.0403383101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_37_13431_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373328</jstor_id><sourcerecordid>3373328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</originalsourceid><addsrcrecordid>eNqFkEFP4zAQhS0Egi7LmcsKRXvjEDqTsWvnwGEFLItUaZFgz5aTON1UbhyctNB_j6tWdDntaQ7zvTdvHmPnCFcIksZda_or4ECkCAEP2Aghx3TCczhkI4BMpopn_IR96fs5AORCwTE7QUEckOSIjZ99552fNaVxbp3chmZl2-Tp1TrXtLPE14lJHr1bL2xIpt53X9lRbVxvz3bzlP35efd88yud_r5_uPkxTUuu8iEtRCFICFXUWSkVVlgQmTjlROa2lJZbW2QECEYVCipRosDKVpiLbCJtbumUXW99u2WxsFVp2yEYp7vQLExYa28a_XnTNn_1zK-0QCUlj_rvO33wL0vbD3rul6GNkXUWP6eYYwONt1AZfN8HW3_4I-hNv3rTr973GxUX_8ba87tCI3C5AzbKvR1qkhqJE-p66dxg34bIJv9hI_Jti8z7wYcPhuIlyhS9A9TKl_0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201336794</pqid></control><display><type>article</type><title>Topologically Driven Swelling of a Polymer Loop</title><source>Jstor Complete Legacy</source><source>PMC (PubMed Central)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</creator><creatorcontrib>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</creatorcontrib><description>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0403383101</identifier><identifier>PMID: 15340137</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Entropy ; Gyration ; Knots ; Mathematical triviality ; Physical Sciences ; Physics ; Polymers ; Power laws ; Probability ; Probability distributions ; Swelling ; Topological manifolds ; Topological properties ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-09, Vol.101 (37), p.13431-13435</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 14, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</citedby><cites>FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/37.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373328$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373328$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15340137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Nathan T.</creatorcontrib><creatorcontrib>Lua, Rhonald C.</creatorcontrib><creatorcontrib>Grosberg, Alexander Y.</creatorcontrib><creatorcontrib>Novikov, Sergei P.</creatorcontrib><title>Topologically Driven Swelling of a Polymer Loop</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</description><subject>Entropy</subject><subject>Gyration</subject><subject>Knots</subject><subject>Mathematical triviality</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><subject>Power laws</subject><subject>Probability</subject><subject>Probability distributions</subject><subject>Swelling</subject><subject>Topological manifolds</subject><subject>Topological properties</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP4zAQhS0Egi7LmcsKRXvjEDqTsWvnwGEFLItUaZFgz5aTON1UbhyctNB_j6tWdDntaQ7zvTdvHmPnCFcIksZda_or4ECkCAEP2Aghx3TCczhkI4BMpopn_IR96fs5AORCwTE7QUEckOSIjZ99552fNaVxbp3chmZl2-Tp1TrXtLPE14lJHr1bL2xIpt53X9lRbVxvz3bzlP35efd88yud_r5_uPkxTUuu8iEtRCFICFXUWSkVVlgQmTjlROa2lJZbW2QECEYVCipRosDKVpiLbCJtbumUXW99u2WxsFVp2yEYp7vQLExYa28a_XnTNn_1zK-0QCUlj_rvO33wL0vbD3rul6GNkXUWP6eYYwONt1AZfN8HW3_4I-hNv3rTr973GxUX_8ba87tCI3C5AzbKvR1qkhqJE-p66dxg34bIJv9hI_Jti8z7wYcPhuIlyhS9A9TKl_0</recordid><startdate>20040914</startdate><enddate>20040914</enddate><creator>Moore, Nathan T.</creator><creator>Lua, Rhonald C.</creator><creator>Grosberg, Alexander Y.</creator><creator>Novikov, Sergei P.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20040914</creationdate><title>Topologically Driven Swelling of a Polymer Loop</title><author>Moore, Nathan T. ; Lua, Rhonald C. ; Grosberg, Alexander Y. ; Novikov, Sergei P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-b5b53558bf2c781d1b33a81d7679ec7e4eeb23010a8b80d5c151ded195267e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Entropy</topic><topic>Gyration</topic><topic>Knots</topic><topic>Mathematical triviality</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><topic>Power laws</topic><topic>Probability</topic><topic>Probability distributions</topic><topic>Swelling</topic><topic>Topological manifolds</topic><topic>Topological properties</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Nathan T.</creatorcontrib><creatorcontrib>Lua, Rhonald C.</creatorcontrib><creatorcontrib>Grosberg, Alexander Y.</creatorcontrib><creatorcontrib>Novikov, Sergei P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Nathan T.</au><au>Lua, Rhonald C.</au><au>Grosberg, Alexander Y.</au><au>Novikov, Sergei P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topologically Driven Swelling of a Polymer Loop</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-09-14</date><risdate>2004</risdate><volume>101</volume><issue>37</issue><spage>13431</spage><epage>13435</epage><pages>13431-13435</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Numerical studies of the average size of trivially knotted polymer loops with no excluded volume were undertaken. Topology was identified by Alexander and Vassiliev degree 2 invariants. Probability of a trivial knot, average gyration radius, and probability density distributions as functions of gyration radius were generated for loops of up to N = 3,000 segments. Gyration radii of trivially knotted loops were found to follow a power law similar to that of self-avoiding walks consistent with earlier theoretical predictions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15340137</pmid><doi>10.1073/pnas.0403383101</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-09, Vol.101 (37), p.13431-13435 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_101_37_13431_fulltext |
source | Jstor Complete Legacy; PMC (PubMed Central); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Entropy Gyration Knots Mathematical triviality Physical Sciences Physics Polymers Power laws Probability Probability distributions Swelling Topological manifolds Topological properties Topology |
title | Topologically Driven Swelling of a Polymer Loop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A57%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topologically%20Driven%20Swelling%20of%20a%20Polymer%20Loop&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Moore,%20Nathan%20T.&rft.date=2004-09-14&rft.volume=101&rft.issue=37&rft.spage=13431&rft.epage=13435&rft.pages=13431-13435&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0403383101&rft_dat=%3Cjstor_pnas_%3E3373328%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201336794&rft_id=info:pmid/15340137&rft_jstor_id=3373328&rfr_iscdi=true |