Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles
Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2004-08, Vol.101 (33), p.12096-12101 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12101 |
---|---|
container_issue | 33 |
container_start_page | 12096 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Navrotsky, Alexandra |
description | Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization. |
doi_str_mv | 10.1073/pnas.0404778101 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_33_12096_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373096</jstor_id><sourcerecordid>3373096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAWhiEMlJNKOv-IYiUNZlQ-pgh7gwMlyHLvNKmtvbQcofz0Ou-oCl55mpPm9p5l5CD3FcIxB0JON1-kYGDAhWgz4HlpgkLhumIT7aAFARN0ywg7Qo5RWACB5Cw_RAeZEiobgBfp25m28tHkw1XKcbKpyqC50vvqhb_70b4ewHgqix-GXzkPwr6uLaM0UU4jp1axJ2c6d9n31Sfuw0bGYjTY9Rg-cHpN9squH6Ou7sy_LD_X55_cfl6fnteGS5LqBvgFwQjtuMSF9R53puJWmdbhnjElnO2CcaUlkL9quJ9bpRoJhrm10R-gherP13Uzd2vbG-ly2VZs4rHW8UUEP6t-JH67UZfiuOC72uOiPdvoYrssHsloPydhx1N6GKammEZJLLu4EcQuEtnx2fPEfuApT9OUJigCmnBHMCnSyhUwMKUXrbjfGoOZs1Zyt2mdbFM__PnTP78IswMsdMCv3dlhRqjAB2Sg3jWO2P3NhqzvYgjzbIquUQ7xlKBV0Hv8GXZnDjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201354214</pqid></control><display><type>article</type><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Navrotsky, Alexandra</creator><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><description>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0404778101</identifier><identifier>PMID: 15297621</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biomineralogy ; Chemistry ; Crystallization ; Crystals ; Energy Metabolism ; Enthalpy ; Free energy ; Gels ; Kinetics ; Metastable atoms ; Minerals ; Minerals - metabolism ; Models, Biological ; Molecules ; Nanoparticles ; Nanotubes ; Physical Sciences ; Roles ; Surface energy ; Thermodynamics ; Water - metabolism ; Zeolites</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12096-12101</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 17, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</citedby><cites>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27915,27916,53782,53784,58008,58241</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15297621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</description><subject>Animals</subject><subject>Biomineralogy</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Energy Metabolism</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Gels</subject><subject>Kinetics</subject><subject>Metastable atoms</subject><subject>Minerals</subject><subject>Minerals - metabolism</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Physical Sciences</subject><subject>Roles</subject><subject>Surface energy</subject><subject>Thermodynamics</subject><subject>Water - metabolism</subject><subject>Zeolites</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAWhiEMlJNKOv-IYiUNZlQ-pgh7gwMlyHLvNKmtvbQcofz0Ou-oCl55mpPm9p5l5CD3FcIxB0JON1-kYGDAhWgz4HlpgkLhumIT7aAFARN0ywg7Qo5RWACB5Cw_RAeZEiobgBfp25m28tHkw1XKcbKpyqC50vvqhb_70b4ewHgqix-GXzkPwr6uLaM0UU4jp1axJ2c6d9n31Sfuw0bGYjTY9Rg-cHpN9squH6Ou7sy_LD_X55_cfl6fnteGS5LqBvgFwQjtuMSF9R53puJWmdbhnjElnO2CcaUlkL9quJ9bpRoJhrm10R-gherP13Uzd2vbG-ly2VZs4rHW8UUEP6t-JH67UZfiuOC72uOiPdvoYrssHsloPydhx1N6GKammEZJLLu4EcQuEtnx2fPEfuApT9OUJigCmnBHMCnSyhUwMKUXrbjfGoOZs1Zyt2mdbFM__PnTP78IswMsdMCv3dlhRqjAB2Sg3jWO2P3NhqzvYgjzbIquUQ7xlKBV0Hv8GXZnDjw</recordid><startdate>20040817</startdate><enddate>20040817</enddate><creator>Navrotsky, Alexandra</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040817</creationdate><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><author>Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biomineralogy</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Energy Metabolism</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Gels</topic><topic>Kinetics</topic><topic>Metastable atoms</topic><topic>Minerals</topic><topic>Minerals - metabolism</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Physical Sciences</topic><topic>Roles</topic><topic>Surface energy</topic><topic>Thermodynamics</topic><topic>Water - metabolism</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navrotsky, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-08-17</date><risdate>2004</risdate><volume>101</volume><issue>33</issue><spage>12096</spage><epage>12101</epage><pages>12096-12101</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15297621</pmid><doi>10.1073/pnas.0404778101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12096-12101 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_101_33_12096_fulltext |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Animals Biomineralogy Chemistry Crystallization Crystals Energy Metabolism Enthalpy Free energy Gels Kinetics Metastable atoms Minerals Minerals - metabolism Models, Biological Molecules Nanoparticles Nanotubes Physical Sciences Roles Surface energy Thermodynamics Water - metabolism Zeolites |
title | Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Clues%20to%20Pathways%20to%20Biomineralization:%20Precursors,%20Clusters,%20and%20Nanoparticles&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Navrotsky,%20Alexandra&rft.date=2004-08-17&rft.volume=101&rft.issue=33&rft.spage=12096&rft.epage=12101&rft.pages=12096-12101&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0404778101&rft_dat=%3Cjstor_pnas_%3E3373096%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201354214&rft_id=info:pmid/15297621&rft_jstor_id=3373096&rfr_iscdi=true |