Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles

Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-08, Vol.101 (33), p.12096-12101
1. Verfasser: Navrotsky, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12101
container_issue 33
container_start_page 12096
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Navrotsky, Alexandra
description Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.
doi_str_mv 10.1073/pnas.0404778101
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_33_12096_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3373096</jstor_id><sourcerecordid>3373096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAWhiEMlJNKOv-IYiUNZlQ-pgh7gwMlyHLvNKmtvbQcofz0Ou-oCl55mpPm9p5l5CD3FcIxB0JON1-kYGDAhWgz4HlpgkLhumIT7aAFARN0ywg7Qo5RWACB5Cw_RAeZEiobgBfp25m28tHkw1XKcbKpyqC50vvqhb_70b4ewHgqix-GXzkPwr6uLaM0UU4jp1axJ2c6d9n31Sfuw0bGYjTY9Rg-cHpN9squH6Ou7sy_LD_X55_cfl6fnteGS5LqBvgFwQjtuMSF9R53puJWmdbhnjElnO2CcaUlkL9quJ9bpRoJhrm10R-gherP13Uzd2vbG-ly2VZs4rHW8UUEP6t-JH67UZfiuOC72uOiPdvoYrssHsloPydhx1N6GKammEZJLLu4EcQuEtnx2fPEfuApT9OUJigCmnBHMCnSyhUwMKUXrbjfGoOZs1Zyt2mdbFM__PnTP78IswMsdMCv3dlhRqjAB2Sg3jWO2P3NhqzvYgjzbIquUQ7xlKBV0Hv8GXZnDjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201354214</pqid></control><display><type>article</type><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Navrotsky, Alexandra</creator><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><description>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0404778101</identifier><identifier>PMID: 15297621</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biomineralogy ; Chemistry ; Crystallization ; Crystals ; Energy Metabolism ; Enthalpy ; Free energy ; Gels ; Kinetics ; Metastable atoms ; Minerals ; Minerals - metabolism ; Models, Biological ; Molecules ; Nanoparticles ; Nanotubes ; Physical Sciences ; Roles ; Surface energy ; Thermodynamics ; Water - metabolism ; Zeolites</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12096-12101</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 17, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</citedby><cites>FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3373096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3373096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27915,27916,53782,53784,58008,58241</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15297621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</description><subject>Animals</subject><subject>Biomineralogy</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Energy Metabolism</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Gels</subject><subject>Kinetics</subject><subject>Metastable atoms</subject><subject>Minerals</subject><subject>Minerals - metabolism</subject><subject>Models, Biological</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Nanotubes</subject><subject>Physical Sciences</subject><subject>Roles</subject><subject>Surface energy</subject><subject>Thermodynamics</subject><subject>Water - metabolism</subject><subject>Zeolites</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAWhiEMlJNKOv-IYiUNZlQ-pgh7gwMlyHLvNKmtvbQcofz0Ou-oCl55mpPm9p5l5CD3FcIxB0JON1-kYGDAhWgz4HlpgkLhumIT7aAFARN0ywg7Qo5RWACB5Cw_RAeZEiobgBfp25m28tHkw1XKcbKpyqC50vvqhb_70b4ewHgqix-GXzkPwr6uLaM0UU4jp1axJ2c6d9n31Sfuw0bGYjTY9Rg-cHpN9squH6Ou7sy_LD_X55_cfl6fnteGS5LqBvgFwQjtuMSF9R53puJWmdbhnjElnO2CcaUlkL9quJ9bpRoJhrm10R-gherP13Uzd2vbG-ly2VZs4rHW8UUEP6t-JH67UZfiuOC72uOiPdvoYrssHsloPydhx1N6GKammEZJLLu4EcQuEtnx2fPEfuApT9OUJigCmnBHMCnSyhUwMKUXrbjfGoOZs1Zyt2mdbFM__PnTP78IswMsdMCv3dlhRqjAB2Sg3jWO2P3NhqzvYgjzbIquUQ7xlKBV0Hv8GXZnDjw</recordid><startdate>20040817</startdate><enddate>20040817</enddate><creator>Navrotsky, Alexandra</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040817</creationdate><title>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</title><author>Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-60d600f7af5e122db3fcb5e9c8f1d4449feb0454a929d78bd2efa690c4f86ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Biomineralogy</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Energy Metabolism</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Gels</topic><topic>Kinetics</topic><topic>Metastable atoms</topic><topic>Minerals</topic><topic>Minerals - metabolism</topic><topic>Models, Biological</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Nanotubes</topic><topic>Physical Sciences</topic><topic>Roles</topic><topic>Surface energy</topic><topic>Thermodynamics</topic><topic>Water - metabolism</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navrotsky, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-08-17</date><risdate>2004</risdate><volume>101</volume><issue>33</issue><spage>12096</spage><epage>12101</epage><pages>12096-12101</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucleation and growth, assembly of nanoparticles may provide alternative mechanisms for crystal growth. The Ostwald step rule, based on a thermodynamic view of nucleation and growth, is supported by the observation that more metastable phases tend to have lower surface energies. Examples from nonbiological systems, stressing the interplay of thermodynamic and kinetic factors, illustrate features potentially important to biomineralization.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15297621</pmid><doi>10.1073/pnas.0404778101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (33), p.12096-12101
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_101_33_12096_fulltext
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animals
Biomineralogy
Chemistry
Crystallization
Crystals
Energy Metabolism
Enthalpy
Free energy
Gels
Kinetics
Metastable atoms
Minerals
Minerals - metabolism
Models, Biological
Molecules
Nanoparticles
Nanotubes
Physical Sciences
Roles
Surface energy
Thermodynamics
Water - metabolism
Zeolites
title Energetic Clues to Pathways to Biomineralization: Precursors, Clusters, and Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Clues%20to%20Pathways%20to%20Biomineralization:%20Precursors,%20Clusters,%20and%20Nanoparticles&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Navrotsky,%20Alexandra&rft.date=2004-08-17&rft.volume=101&rft.issue=33&rft.spage=12096&rft.epage=12101&rft.pages=12096-12101&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0404778101&rft_dat=%3Cjstor_pnas_%3E3373096%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201354214&rft_id=info:pmid/15297621&rft_jstor_id=3373096&rfr_iscdi=true