Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport
Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (25), p.14937-14942 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14942 |
---|---|
container_issue | 25 |
container_start_page | 14937 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Rappoldt, C Pieters, G.J.J.M Adema, E.B Baaijens, G.J Grootjans, A.P Duijn, C.J. van |
description | Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow. |
doi_str_mv | 10.1073/pnas.1936122100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_100_25_14937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148539</jstor_id><sourcerecordid>3148539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-5f2b1f8a4a9059675f261c7cf740f9f36e7f7ebed2846144b22bd5e92eba77653</originalsourceid><addsrcrecordid>eNqFkstv1DAQhyMEokvhzAWBxQGJQ9rxI3aMxAEqXlIRB-jZcrL2NivHTu2ky_73OMqqC1x68cgz3280r6J4juEMg6Dng9fpDEvKMSEY4EGxwiBxyZmEh8UKgIiyZoSdFE9S2gKArGp4XJxgxitBa7wqvn-cwl77dl-uY3drPLIu7FDnkUaD0SPqQ0rI6b2JSKfs7E17rX2XemRDRCm4aTRojNqnIcTxafHIapfMs4M9La4-f_p18bW8_PHl28WHy7LlgMeysqTBttZMS6gkF_nPcStaKxhYaSk3wgrTmDWpGceMNYQ068pIYhotBK_oafFuybvTG-M7nx_ldWy7pILulOuaqONe7aaovJvNMDVJUS4pgSx-v4izszfr1vhcv1ND7PpZNCf4N-K7a7UJt4pIWVc8698c9DHcTCaNqu9Sa5zT3oQpKZErrjGr7wWxJFUtxZzx9X_gNkzR5wkqApiymjOcofMFamPeSTT2rmIMaj4GNR-DOh5DVrz8u9Ejf9h-BtABmJXHdKBIlSlJRUbe3oMoOzk3mt9jZl8s7DaNId7BNM-iojKHXy1hq4PSm5iXdfVz7g8w0DwJQv8Ags_dNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201348641</pqid></control><display><type>article</type><title>Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rappoldt, C ; Pieters, G.J.J.M ; Adema, E.B ; Baaijens, G.J ; Grootjans, A.P ; Duijn, C.J. van</creator><creatorcontrib>Rappoldt, C ; Pieters, G.J.J.M ; Adema, E.B ; Baaijens, G.J ; Grootjans, A.P ; Duijn, C.J. van</creatorcontrib><description>Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1936122100</identifier><identifier>PMID: 14657381</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; bog ; boundary-conditions ; Bryophyta - physiology ; Buoyancy ; carbon ; convection ; Cooling ; Ecosystem ; Ecosystems ; Fluid flow ; Freshwater ; Geological Phenomena ; Geology ; Ground state ; growth ; heat transfer ; horizontal porous layer ; hydraulic conductivity ; hydrodynamics ; large peatlands ; mathematical models ; Methane - chemistry ; Models, Theoretical ; modulation ; Oxygen ; Oxygen - metabolism ; Peat ; peatlands ; Plant ecology ; Rayleigh number ; Soil ; Sphagnum ; Sphagnum cuspidatum ; stability ; Surface temperature ; Surface water ; Temperature ; Temperature gradients ; Time Factors ; Water ; water flow ; Water Supply ; Water temperature ; Wetlands</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (25), p.14937-14942</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-5f2b1f8a4a9059675f261c7cf740f9f36e7f7ebed2846144b22bd5e92eba77653</citedby><cites>FETCH-LOGICAL-c601t-5f2b1f8a4a9059675f261c7cf740f9f36e7f7ebed2846144b22bd5e92eba77653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148539$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148539$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14657381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rappoldt, C</creatorcontrib><creatorcontrib>Pieters, G.J.J.M</creatorcontrib><creatorcontrib>Adema, E.B</creatorcontrib><creatorcontrib>Baaijens, G.J</creatorcontrib><creatorcontrib>Grootjans, A.P</creatorcontrib><creatorcontrib>Duijn, C.J. van</creatorcontrib><title>Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow.</description><subject>Biological Sciences</subject><subject>bog</subject><subject>boundary-conditions</subject><subject>Bryophyta - physiology</subject><subject>Buoyancy</subject><subject>carbon</subject><subject>convection</subject><subject>Cooling</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Fluid flow</subject><subject>Freshwater</subject><subject>Geological Phenomena</subject><subject>Geology</subject><subject>Ground state</subject><subject>growth</subject><subject>heat transfer</subject><subject>horizontal porous layer</subject><subject>hydraulic conductivity</subject><subject>hydrodynamics</subject><subject>large peatlands</subject><subject>mathematical models</subject><subject>Methane - chemistry</subject><subject>Models, Theoretical</subject><subject>modulation</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Peat</subject><subject>peatlands</subject><subject>Plant ecology</subject><subject>Rayleigh number</subject><subject>Soil</subject><subject>Sphagnum</subject><subject>Sphagnum cuspidatum</subject><subject>stability</subject><subject>Surface temperature</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Time Factors</subject><subject>Water</subject><subject>water flow</subject><subject>Water Supply</subject><subject>Water temperature</subject><subject>Wetlands</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkstv1DAQhyMEokvhzAWBxQGJQ9rxI3aMxAEqXlIRB-jZcrL2NivHTu2ky_73OMqqC1x68cgz3280r6J4juEMg6Dng9fpDEvKMSEY4EGxwiBxyZmEh8UKgIiyZoSdFE9S2gKArGp4XJxgxitBa7wqvn-cwl77dl-uY3drPLIu7FDnkUaD0SPqQ0rI6b2JSKfs7E17rX2XemRDRCm4aTRojNqnIcTxafHIapfMs4M9La4-f_p18bW8_PHl28WHy7LlgMeysqTBttZMS6gkF_nPcStaKxhYaSk3wgrTmDWpGceMNYQ068pIYhotBK_oafFuybvTG-M7nx_ldWy7pILulOuaqONe7aaovJvNMDVJUS4pgSx-v4izszfr1vhcv1ND7PpZNCf4N-K7a7UJt4pIWVc8698c9DHcTCaNqu9Sa5zT3oQpKZErrjGr7wWxJFUtxZzx9X_gNkzR5wkqApiymjOcofMFamPeSTT2rmIMaj4GNR-DOh5DVrz8u9Ejf9h-BtABmJXHdKBIlSlJRUbe3oMoOzk3mt9jZl8s7DaNId7BNM-iojKHXy1hq4PSm5iXdfVz7g8w0DwJQv8Ags_dNg</recordid><startdate>20031209</startdate><enddate>20031209</enddate><creator>Rappoldt, C</creator><creator>Pieters, G.J.J.M</creator><creator>Adema, E.B</creator><creator>Baaijens, G.J</creator><creator>Grootjans, A.P</creator><creator>Duijn, C.J. van</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20031209</creationdate><title>Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport</title><author>Rappoldt, C ; Pieters, G.J.J.M ; Adema, E.B ; Baaijens, G.J ; Grootjans, A.P ; Duijn, C.J. van</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-5f2b1f8a4a9059675f261c7cf740f9f36e7f7ebed2846144b22bd5e92eba77653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological Sciences</topic><topic>bog</topic><topic>boundary-conditions</topic><topic>Bryophyta - physiology</topic><topic>Buoyancy</topic><topic>carbon</topic><topic>convection</topic><topic>Cooling</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Fluid flow</topic><topic>Freshwater</topic><topic>Geological Phenomena</topic><topic>Geology</topic><topic>Ground state</topic><topic>growth</topic><topic>heat transfer</topic><topic>horizontal porous layer</topic><topic>hydraulic conductivity</topic><topic>hydrodynamics</topic><topic>large peatlands</topic><topic>mathematical models</topic><topic>Methane - chemistry</topic><topic>Models, Theoretical</topic><topic>modulation</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Peat</topic><topic>peatlands</topic><topic>Plant ecology</topic><topic>Rayleigh number</topic><topic>Soil</topic><topic>Sphagnum</topic><topic>Sphagnum cuspidatum</topic><topic>stability</topic><topic>Surface temperature</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Time Factors</topic><topic>Water</topic><topic>water flow</topic><topic>Water Supply</topic><topic>Water temperature</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rappoldt, C</creatorcontrib><creatorcontrib>Pieters, G.J.J.M</creatorcontrib><creatorcontrib>Adema, E.B</creatorcontrib><creatorcontrib>Baaijens, G.J</creatorcontrib><creatorcontrib>Grootjans, A.P</creatorcontrib><creatorcontrib>Duijn, C.J. van</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rappoldt, C</au><au>Pieters, G.J.J.M</au><au>Adema, E.B</au><au>Baaijens, G.J</au><au>Grootjans, A.P</au><au>Duijn, C.J. van</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-09</date><risdate>2003</risdate><volume>100</volume><issue>25</issue><spage>14937</spage><epage>14942</epage><pages>14937-14942</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surface water, and the upward flow of warm water induced by nocturnal cooling. Mathematical stability analysis showed that buoyancy flow occurs in a cooling porous layer if the system's Rayleigh number (Ra) exceeds 25. For a temperature difference of 10 K between day and night, a typical Ra value for a peat moss layer is 80, which leads to quickly developing buoyancy cells. Numerical simulation demonstrated that fluid flow leads to a considerable mixing of water. Temperature measurements in a cylindrical peat sample of 50-cm height and 35-cm diameter were in agreement with the theoretical results. The nocturnal flow and the associated mixing of the water represent a mechanism for solute transport in water-saturated parts of peat land and in other types of terrestrializing vegetation. This mechanism may be particularly important in continental wetlands, where Ra values in summer are often much larger than the threshold for fluid flow.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14657381</pmid><doi>10.1073/pnas.1936122100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (25), p.14937-14942 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_100_25_14937 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences bog boundary-conditions Bryophyta - physiology Buoyancy carbon convection Cooling Ecosystem Ecosystems Fluid flow Freshwater Geological Phenomena Geology Ground state growth heat transfer horizontal porous layer hydraulic conductivity hydrodynamics large peatlands mathematical models Methane - chemistry Models, Theoretical modulation Oxygen Oxygen - metabolism Peat peatlands Plant ecology Rayleigh number Soil Sphagnum Sphagnum cuspidatum stability Surface temperature Surface water Temperature Temperature gradients Time Factors Water water flow Water Supply Water temperature Wetlands |
title | Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buoyancy-driven%20flow%20in%20a%20peat%20moss%20layer%20as%20a%20mechanism%20for%20solute%20transport&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rappoldt,%20C&rft.date=2003-12-09&rft.volume=100&rft.issue=25&rft.spage=14937&rft.epage=14942&rft.pages=14937-14942&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1936122100&rft_dat=%3Cjstor_pnas_%3E3148539%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201348641&rft_id=info:pmid/14657381&rft_jstor_id=3148539&rfr_iscdi=true |