Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons
At the first stage of processing in the olfactory pathway, the patterns of glomerular activity evoked by different scents are both temporally and spatially dynamic. In the antennal lobe (AL) of some insects, coherent firing of AL projection neurons (PNs) can be phase-locked to network oscillations,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-09, Vol.100 (19), p.11076-11081 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11081 |
---|---|
container_issue | 19 |
container_start_page | 11076 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Christensen, Thomas A. Lei, Hong Hildebrand, John G. |
description | At the first stage of processing in the olfactory pathway, the patterns of glomerular activity evoked by different scents are both temporally and spatially dynamic. In the antennal lobe (AL) of some insects, coherent firing of AL projection neurons (PNs) can be phase-locked to network oscillations, and it has been proposed that oscillatory synchronization of PN activity may encode the chemical identity of the olfactory stimulus. It remains unclear, however, how the brain uses this time-constrained mechanism to encode chemical identity when the stimulus itself is unpredictably dynamic. In the olfactory pathway of the moth Manduca sexta, we find that different odorants evoke gamma-band oscillations in the AL and the mushroom body (a higher-order network that receives input from the AL), but oscillations within or between these two processing stages are not temporally coherent. Moreover, the timing of action potential firing in PNs is not phase-locked to oscillations in either the AL or mushroom body, and the correlation between PN synchrony and field oscillations remains low before, during, and after olfactory stimulation. These results demonstrate that olfactory circuits in the moth are specialized to preserve time-varying signals in the insect's olfactory space, and that stimulus dynamics rather than intrinsic oscillations modulate the uniquely coordinated pattern of PN synchronization evoked by each olfactory stimulus. We propose that non-oscillatory synchronization provides an adaptive mechanism by which PN ensembles can encode stimulus identity while concurrently monitoring the unpredictable dynamics in the olfactory signal that typically occur under natural stimulus conditions. |
doi_str_mv | 10.1073/pnas.1934001100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_100_19_11076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3147432</jstor_id><sourcerecordid>3147432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-1d31030139d767e91abc42e0b33634d249c6ae8880bf21b51e7cf1a19479ec483</originalsourceid><addsrcrecordid>eNqFkc1rVDEUxYModqyu3YgEFwXB1-YmeR9ZuJBBq1A6oHUd8vLyOm94k7zmQzriH2_GGWbUTVeBe3_nkHMPQi-BnAOp2cVkVTgHwTghAIQ8QjMgAoqKC_IYzQihddFwyk_QsxBWhBBRNuQpOgEqKsJqOkO_5s75brAqDs5i1-O5sdGrES865_FXM3kT8uTPOuC49C7dLvGNVzYMef4OXztbLIIexlFF5zf428bqTNnh58HycnRr49OoPF6kOKWIr03KSHiOnvRqDObF_j1F3z99vJl_Lq4Wl1_mH64KXQoaC-gYEEaAia6uaiNAtZpTQ1rGKsY7yoWulGmahrQ9hbYEU-seFAheC6N5w07R-53vlNq16fQuopz8sFZ-I50a5L8bOyzlrfshQVSCiqw_2-u9u0smRLkegjY5sjUuBVmzqmwYpw-C0AhW8mrr-OY_cOWSt_kIkuagJS0BMnSxg7R3IXjTH34MRG7rl9v65bH-rHj9d9Ajv-87A3gPbJVHu-wnZLaoq4y8fQCRfRrHaO5jZl_t2FXI5R9gBrzmjLLfAzfQPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201352511</pqid></control><display><type>article</type><title>Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Christensen, Thomas A. ; Lei, Hong ; Hildebrand, John G.</creator><creatorcontrib>Christensen, Thomas A. ; Lei, Hong ; Hildebrand, John G.</creatorcontrib><description>At the first stage of processing in the olfactory pathway, the patterns of glomerular activity evoked by different scents are both temporally and spatially dynamic. In the antennal lobe (AL) of some insects, coherent firing of AL projection neurons (PNs) can be phase-locked to network oscillations, and it has been proposed that oscillatory synchronization of PN activity may encode the chemical identity of the olfactory stimulus. It remains unclear, however, how the brain uses this time-constrained mechanism to encode chemical identity when the stimulus itself is unpredictably dynamic. In the olfactory pathway of the moth Manduca sexta, we find that different odorants evoke gamma-band oscillations in the AL and the mushroom body (a higher-order network that receives input from the AL), but oscillations within or between these two processing stages are not temporally coherent. Moreover, the timing of action potential firing in PNs is not phase-locked to oscillations in either the AL or mushroom body, and the correlation between PN synchrony and field oscillations remains low before, during, and after olfactory stimulation. These results demonstrate that olfactory circuits in the moth are specialized to preserve time-varying signals in the insect's olfactory space, and that stimulus dynamics rather than intrinsic oscillations modulate the uniquely coordinated pattern of PN synchronization evoked by each olfactory stimulus. We propose that non-oscillatory synchronization provides an adaptive mechanism by which PN ensembles can encode stimulus identity while concurrently monitoring the unpredictable dynamics in the olfactory signal that typically occur under natural stimulus conditions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1934001100</identifier><identifier>PMID: 12960372</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Brain ; Glomerulus ; Identity ; Male ; Manduca ; Manduca sexta ; Moths ; Neurology ; Neurons ; Neurons - physiology ; Odorants ; Odors ; Olfactory stimulation ; Pheromones ; Sensory perception ; Smell ; Spectroscopic analysis ; Vertebrates</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-09, Vol.100 (19), p.11076-11081</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 16, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-1d31030139d767e91abc42e0b33634d249c6ae8880bf21b51e7cf1a19479ec483</citedby><cites>FETCH-LOGICAL-c592t-1d31030139d767e91abc42e0b33634d249c6ae8880bf21b51e7cf1a19479ec483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3147432$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3147432$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12960372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christensen, Thomas A.</creatorcontrib><creatorcontrib>Lei, Hong</creatorcontrib><creatorcontrib>Hildebrand, John G.</creatorcontrib><title>Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>At the first stage of processing in the olfactory pathway, the patterns of glomerular activity evoked by different scents are both temporally and spatially dynamic. In the antennal lobe (AL) of some insects, coherent firing of AL projection neurons (PNs) can be phase-locked to network oscillations, and it has been proposed that oscillatory synchronization of PN activity may encode the chemical identity of the olfactory stimulus. It remains unclear, however, how the brain uses this time-constrained mechanism to encode chemical identity when the stimulus itself is unpredictably dynamic. In the olfactory pathway of the moth Manduca sexta, we find that different odorants evoke gamma-band oscillations in the AL and the mushroom body (a higher-order network that receives input from the AL), but oscillations within or between these two processing stages are not temporally coherent. Moreover, the timing of action potential firing in PNs is not phase-locked to oscillations in either the AL or mushroom body, and the correlation between PN synchrony and field oscillations remains low before, during, and after olfactory stimulation. These results demonstrate that olfactory circuits in the moth are specialized to preserve time-varying signals in the insect's olfactory space, and that stimulus dynamics rather than intrinsic oscillations modulate the uniquely coordinated pattern of PN synchronization evoked by each olfactory stimulus. We propose that non-oscillatory synchronization provides an adaptive mechanism by which PN ensembles can encode stimulus identity while concurrently monitoring the unpredictable dynamics in the olfactory signal that typically occur under natural stimulus conditions.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Glomerulus</subject><subject>Identity</subject><subject>Male</subject><subject>Manduca</subject><subject>Manduca sexta</subject><subject>Moths</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Odorants</subject><subject>Odors</subject><subject>Olfactory stimulation</subject><subject>Pheromones</subject><subject>Sensory perception</subject><subject>Smell</subject><subject>Spectroscopic analysis</subject><subject>Vertebrates</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rVDEUxYModqyu3YgEFwXB1-YmeR9ZuJBBq1A6oHUd8vLyOm94k7zmQzriH2_GGWbUTVeBe3_nkHMPQi-BnAOp2cVkVTgHwTghAIQ8QjMgAoqKC_IYzQihddFwyk_QsxBWhBBRNuQpOgEqKsJqOkO_5s75brAqDs5i1-O5sdGrES865_FXM3kT8uTPOuC49C7dLvGNVzYMef4OXztbLIIexlFF5zf428bqTNnh58HycnRr49OoPF6kOKWIr03KSHiOnvRqDObF_j1F3z99vJl_Lq4Wl1_mH64KXQoaC-gYEEaAia6uaiNAtZpTQ1rGKsY7yoWulGmahrQ9hbYEU-seFAheC6N5w07R-53vlNq16fQuopz8sFZ-I50a5L8bOyzlrfshQVSCiqw_2-u9u0smRLkegjY5sjUuBVmzqmwYpw-C0AhW8mrr-OY_cOWSt_kIkuagJS0BMnSxg7R3IXjTH34MRG7rl9v65bH-rHj9d9Ajv-87A3gPbJVHu-wnZLaoq4y8fQCRfRrHaO5jZl_t2FXI5R9gBrzmjLLfAzfQPg</recordid><startdate>20030916</startdate><enddate>20030916</enddate><creator>Christensen, Thomas A.</creator><creator>Lei, Hong</creator><creator>Hildebrand, John G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030916</creationdate><title>Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons</title><author>Christensen, Thomas A. ; Lei, Hong ; Hildebrand, John G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-1d31030139d767e91abc42e0b33634d249c6ae8880bf21b51e7cf1a19479ec483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Glomerulus</topic><topic>Identity</topic><topic>Male</topic><topic>Manduca</topic><topic>Manduca sexta</topic><topic>Moths</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Odorants</topic><topic>Odors</topic><topic>Olfactory stimulation</topic><topic>Pheromones</topic><topic>Sensory perception</topic><topic>Smell</topic><topic>Spectroscopic analysis</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Thomas A.</creatorcontrib><creatorcontrib>Lei, Hong</creatorcontrib><creatorcontrib>Hildebrand, John G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Thomas A.</au><au>Lei, Hong</au><au>Hildebrand, John G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-09-16</date><risdate>2003</risdate><volume>100</volume><issue>19</issue><spage>11076</spage><epage>11081</epage><pages>11076-11081</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>At the first stage of processing in the olfactory pathway, the patterns of glomerular activity evoked by different scents are both temporally and spatially dynamic. In the antennal lobe (AL) of some insects, coherent firing of AL projection neurons (PNs) can be phase-locked to network oscillations, and it has been proposed that oscillatory synchronization of PN activity may encode the chemical identity of the olfactory stimulus. It remains unclear, however, how the brain uses this time-constrained mechanism to encode chemical identity when the stimulus itself is unpredictably dynamic. In the olfactory pathway of the moth Manduca sexta, we find that different odorants evoke gamma-band oscillations in the AL and the mushroom body (a higher-order network that receives input from the AL), but oscillations within or between these two processing stages are not temporally coherent. Moreover, the timing of action potential firing in PNs is not phase-locked to oscillations in either the AL or mushroom body, and the correlation between PN synchrony and field oscillations remains low before, during, and after olfactory stimulation. These results demonstrate that olfactory circuits in the moth are specialized to preserve time-varying signals in the insect's olfactory space, and that stimulus dynamics rather than intrinsic oscillations modulate the uniquely coordinated pattern of PN synchronization evoked by each olfactory stimulus. We propose that non-oscillatory synchronization provides an adaptive mechanism by which PN ensembles can encode stimulus identity while concurrently monitoring the unpredictable dynamics in the olfactory signal that typically occur under natural stimulus conditions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12960372</pmid><doi>10.1073/pnas.1934001100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-09, Vol.100 (19), p.11076-11081 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_100_19_11076 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Animals Biological Sciences Brain Glomerulus Identity Male Manduca Manduca sexta Moths Neurology Neurons Neurons - physiology Odorants Odors Olfactory stimulation Pheromones Sensory perception Smell Spectroscopic analysis Vertebrates |
title | Coordination of Central Odor Representations through Transient, Non-Oscillatory Synchronization of Glomerular Output Neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20of%20Central%20Odor%20Representations%20through%20Transient,%20Non-Oscillatory%20Synchronization%20of%20Glomerular%20Output%20Neurons&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Christensen,%20Thomas%20A.&rft.date=2003-09-16&rft.volume=100&rft.issue=19&rft.spage=11076&rft.epage=11081&rft.pages=11076-11081&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1934001100&rft_dat=%3Cjstor_pnas_%3E3147432%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201352511&rft_id=info:pmid/12960372&rft_jstor_id=3147432&rfr_iscdi=true |