A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights

This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-05, Vol.100 (10), p.6281-6286
Hauptverfasser: D'Andrade, Roy G., Romney, A. Kimball
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6286
container_issue 10
container_start_page 6281
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator D'Andrade, Roy G.
Romney, A. Kimball
description This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.
doi_str_mv 10.1073/pnas.1031827100
format Article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_100_10_6281_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3147579</jstor_id><sourcerecordid>3147579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-3fe6d6d3268b6e427cf307a1aac63109754431daeed08784122aa36507aca6443</originalsourceid><addsrcrecordid>eNqF0k1v1DAQBmALgehSOHNBYHFAvSz1R2I7Bw7VilKkogJtxdFyHWfXq6wdbKei_4MfzES76gIHOGUkP-_IngxCzyl5S4nkx0MwGSpOFZOUkAdoRklD56JqyEM0I4TJuapYdYCe5LwmhDS1Io_RAWWSM8n4DP08wV9GE4ovpvhbhz_F1vW4iwlfJRMyFBsflvir63pniwnW4csBqmSwDyXisoLMGLLre7yIPeQuBwPoOk-xRQzgXcgemvtyh0_HYIuPIWMTWnwxDABCwZ9TtC5n_M355arkp-hRZ_rsnu2-h-j69P3V4mx-fvHh4-LkfG5rVpU575xoRcuZUDfCVUzajhNpqDFWcJiDrKuK09Y41xIlVUUZM4aLGow1As4O0btt32G82bjWwlWS6fWQ_MakOx2N13-eBL_Sy3iraS244JB_s8un-H10ueiNzxZGYYKLY9YwZCUlI_-FVDVMwq8B-PovuI5jCjAEzQjlslJyQsdbZFPMObnu_saU6Gkt9LQWer8WkHj5-0P3frcHAF7twJTct5v6acEUBXH0b6G7se-L-1GAvtjSdS4x3VtOK1nLhv8Cr_jXkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201374870</pqid></control><display><type>article</type><title>A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>D'Andrade, Roy G. ; Romney, A. Kimball</creator><creatorcontrib>D'Andrade, Roy G. ; Romney, A. Kimball</creatorcontrib><description>This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1031827100</identifier><identifier>PMID: 12732723</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Color ; Color Perception - physiology ; Color vision ; Colors ; computational neuroscience ; Contrast Sensitivity ; Coordinate systems ; Cubes ; Humans ; Integers ; Mathematical functions ; Models, Psychological ; Pattern Recognition, Visual - physiology ; Processes ; Quantitative modeling ; Retinal Cone Photoreceptor Cells - physiology ; Sensitivity ; Social Sciences ; Space Perception - physiology ; Spectral reflectance ; Spectroscopic analysis ; Spectrum analysis ; Visual perception</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-05, Vol.100 (10), p.6281-6286</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 13, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-3fe6d6d3268b6e427cf307a1aac63109754431daeed08784122aa36507aca6443</citedby><cites>FETCH-LOGICAL-c524t-3fe6d6d3268b6e427cf307a1aac63109754431daeed08784122aa36507aca6443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3147579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3147579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12732723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>D'Andrade, Roy G.</creatorcontrib><creatorcontrib>Romney, A. Kimball</creatorcontrib><title>A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.</description><subject>Color</subject><subject>Color Perception - physiology</subject><subject>Color vision</subject><subject>Colors</subject><subject>computational neuroscience</subject><subject>Contrast Sensitivity</subject><subject>Coordinate systems</subject><subject>Cubes</subject><subject>Humans</subject><subject>Integers</subject><subject>Mathematical functions</subject><subject>Models, Psychological</subject><subject>Pattern Recognition, Visual - physiology</subject><subject>Processes</subject><subject>Quantitative modeling</subject><subject>Retinal Cone Photoreceptor Cells - physiology</subject><subject>Sensitivity</subject><subject>Social Sciences</subject><subject>Space Perception - physiology</subject><subject>Spectral reflectance</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Visual perception</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k1v1DAQBmALgehSOHNBYHFAvSz1R2I7Bw7VilKkogJtxdFyHWfXq6wdbKei_4MfzES76gIHOGUkP-_IngxCzyl5S4nkx0MwGSpOFZOUkAdoRklD56JqyEM0I4TJuapYdYCe5LwmhDS1Io_RAWWSM8n4DP08wV9GE4ovpvhbhz_F1vW4iwlfJRMyFBsflvir63pniwnW4csBqmSwDyXisoLMGLLre7yIPeQuBwPoOk-xRQzgXcgemvtyh0_HYIuPIWMTWnwxDABCwZ9TtC5n_M355arkp-hRZ_rsnu2-h-j69P3V4mx-fvHh4-LkfG5rVpU575xoRcuZUDfCVUzajhNpqDFWcJiDrKuK09Y41xIlVUUZM4aLGow1As4O0btt32G82bjWwlWS6fWQ_MakOx2N13-eBL_Sy3iraS244JB_s8un-H10ueiNzxZGYYKLY9YwZCUlI_-FVDVMwq8B-PovuI5jCjAEzQjlslJyQsdbZFPMObnu_saU6Gkt9LQWer8WkHj5-0P3frcHAF7twJTct5v6acEUBXH0b6G7se-L-1GAvtjSdS4x3VtOK1nLhv8Cr_jXkw</recordid><startdate>20030513</startdate><enddate>20030513</enddate><creator>D'Andrade, Roy G.</creator><creator>Romney, A. Kimball</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030513</creationdate><title>A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights</title><author>D'Andrade, Roy G. ; Romney, A. Kimball</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-3fe6d6d3268b6e427cf307a1aac63109754431daeed08784122aa36507aca6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Color</topic><topic>Color Perception - physiology</topic><topic>Color vision</topic><topic>Colors</topic><topic>computational neuroscience</topic><topic>Contrast Sensitivity</topic><topic>Coordinate systems</topic><topic>Cubes</topic><topic>Humans</topic><topic>Integers</topic><topic>Mathematical functions</topic><topic>Models, Psychological</topic><topic>Pattern Recognition, Visual - physiology</topic><topic>Processes</topic><topic>Quantitative modeling</topic><topic>Retinal Cone Photoreceptor Cells - physiology</topic><topic>Sensitivity</topic><topic>Social Sciences</topic><topic>Space Perception - physiology</topic><topic>Spectral reflectance</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Andrade, Roy G.</creatorcontrib><creatorcontrib>Romney, A. Kimball</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Andrade, Roy G.</au><au>Romney, A. Kimball</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-05-13</date><risdate>2003</risdate><volume>100</volume><issue>10</issue><spage>6281</spage><epage>6286</epage><pages>6281-6286</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12732723</pmid><doi>10.1073/pnas.1031827100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-05, Vol.100 (10), p.6281-6286
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_100_10_6281_fulltext
source PubMed (Medline); MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Color
Color Perception - physiology
Color vision
Colors
computational neuroscience
Contrast Sensitivity
Coordinate systems
Cubes
Humans
Integers
Mathematical functions
Models, Psychological
Pattern Recognition, Visual - physiology
Processes
Quantitative modeling
Retinal Cone Photoreceptor Cells - physiology
Sensitivity
Social Sciences
Space Perception - physiology
Spectral reflectance
Spectroscopic analysis
Spectrum analysis
Visual perception
title A Quantitative Model for Transforming Reflectance Spectra into the Munsell Color Space Using Cone Sensitivity Functions and Opponent Process Weights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quantitative%20Model%20for%20Transforming%20Reflectance%20Spectra%20into%20the%20Munsell%20Color%20Space%20Using%20Cone%20Sensitivity%20Functions%20and%20Opponent%20Process%20Weights&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=D'Andrade,%20Roy%20G.&rft.date=2003-05-13&rft.volume=100&rft.issue=10&rft.spage=6281&rft.epage=6286&rft.pages=6281-6286&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1031827100&rft_dat=%3Cjstor_pnas_%3E3147579%3C/jstor_pnas_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201374870&rft_id=info:pmid/12732723&rft_jstor_id=3147579&rfr_iscdi=true