Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means
This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order diffe...
Gespeichert in:
Veröffentlicht in: | PloS one 2025-01, Vol.20 (1), p.e0313065 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0313065 |
container_title | PloS one |
container_volume | 20 |
creator | Zhang, Yuhang Wu, Xiaofeng Xu, Jiawei Ning, Zihao Han, Xiao |
description | This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development. |
doi_str_mv | 10.1371/journal.pone.0313065 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3159629602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A824728797</galeid><doaj_id>oai_doaj_org_article_57e313f1809c442eb0efed59409f86fb</doaj_id><sourcerecordid>A824728797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-e6e25224b258d3bb756cd6ee485096dd7a48c716bd15a896bdac1e47a85010f33</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnTpu3TsgxeBhYWvIFP4TQ9mcnSNrNJo858elOnu8zIPkgeEpLf-Z9bTpI8Z3TOeMHeXdvgemjnG9vjnHLGqcgfJKes4ulMpJQ_PDifJE-8v6Y056UQj5MTXpV5lvH0NAmLNvgBnelXBKLc1htPrCY_AhK7QQdErcGBiggZoicyOOwbT2rw2BDbk5sA_RA6sgE3GNUi8b_AddF2MJ3ZwWAio60jOux2W7KYdQi9f5o80tB6fDbtZ8m3D--_Lj7NLq8-LhcXlzOVlUU-Q4FpnqZZneZlw-u6yIVqBGJW5rQSTVNAVqqCibphOZRV3EExzAqI74xqzs-Sl3vdTWu9nCrmJWd5JdJK0DQSyz3RWLiWG2c6cFtpwci_F9at5JSYzAuMVdaspJXKshRrihqbvMpopUuh66h1PnkLdYeNwn5w0B6JHr_0Zi1X9qdkrBCU8jHeN5OCszcB_SA74xW2LfRowxR4Fbs3Bv7qH_T-9CZqBTED02sbHatRVF6UaVakZVEVkZrfQ8XVYGdU7Lo28f7I4O2RQWQG_D2sIHgvl18-_z979f2YfX3ArhHaYe1tG8Zf5I_BbA8qZ713qO-qzKgcx-O2GnIcDzmNRzR7cdihO6PbeeB_AB99C6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159629602</pqid></control><display><type>article</type><title>Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yuhang ; Wu, Xiaofeng ; Xu, Jiawei ; Ning, Zihao ; Han, Xiao</creator><creatorcontrib>Zhang, Yuhang ; Wu, Xiaofeng ; Xu, Jiawei ; Ning, Zihao ; Han, Xiao</creatorcontrib><description>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0313065</identifier><identifier>PMID: 39854432</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Biology and Life Sciences ; Chinese operas ; Classification ; Cluster Analysis ; Clustering ; Correlation ; Cross correlation ; Data analysis ; Datasets ; Digitization ; Fuzzy Logic ; Humans ; Interdisciplinary research ; Interdisciplinary studies ; Interpolation ; Mathematical optimization ; Melody ; Methods ; Music ; Music in education ; Noise ; Optimization ; Particle swarm optimization ; Physical Sciences ; Research and Analysis Methods ; Singing ; Social Sciences ; Trends ; Uncertainty</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0313065</ispartof><rights>Copyright: © 2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Zhang et al 2025 Zhang et al</rights><rights>2025 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4875-e6e25224b258d3bb756cd6ee485096dd7a48c716bd15a896bdac1e47a85010f33</cites><orcidid>0009-0004-6683-3416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760033/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760033/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39854432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><creatorcontrib>Ning, Zihao</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><title>Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Chinese operas</subject><subject>Classification</subject><subject>Cluster Analysis</subject><subject>Clustering</subject><subject>Correlation</subject><subject>Cross correlation</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Digitization</subject><subject>Fuzzy Logic</subject><subject>Humans</subject><subject>Interdisciplinary research</subject><subject>Interdisciplinary studies</subject><subject>Interpolation</subject><subject>Mathematical optimization</subject><subject>Melody</subject><subject>Methods</subject><subject>Music</subject><subject>Music in education</subject><subject>Noise</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Singing</subject><subject>Social Sciences</subject><subject>Trends</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDgujDjEnTpu3TsgxeBhYWvIFP4TQ9mcnSNrNJo858elOnu8zIPkgeEpLf-Z9bTpI8Z3TOeMHeXdvgemjnG9vjnHLGqcgfJKes4ulMpJQ_PDifJE-8v6Y056UQj5MTXpV5lvH0NAmLNvgBnelXBKLc1htPrCY_AhK7QQdErcGBiggZoicyOOwbT2rw2BDbk5sA_RA6sgE3GNUi8b_AddF2MJ3ZwWAio60jOux2W7KYdQi9f5o80tB6fDbtZ8m3D--_Lj7NLq8-LhcXlzOVlUU-Q4FpnqZZneZlw-u6yIVqBGJW5rQSTVNAVqqCibphOZRV3EExzAqI74xqzs-Sl3vdTWu9nCrmJWd5JdJK0DQSyz3RWLiWG2c6cFtpwci_F9at5JSYzAuMVdaspJXKshRrihqbvMpopUuh66h1PnkLdYeNwn5w0B6JHr_0Zi1X9qdkrBCU8jHeN5OCszcB_SA74xW2LfRowxR4Fbs3Bv7qH_T-9CZqBTED02sbHatRVF6UaVakZVEVkZrfQ8XVYGdU7Lo28f7I4O2RQWQG_D2sIHgvl18-_z979f2YfX3ArhHaYe1tG8Zf5I_BbA8qZ713qO-qzKgcx-O2GnIcDzmNRzR7cdihO6PbeeB_AB99C6g</recordid><startdate>20250124</startdate><enddate>20250124</enddate><creator>Zhang, Yuhang</creator><creator>Wu, Xiaofeng</creator><creator>Xu, Jiawei</creator><creator>Ning, Zihao</creator><creator>Han, Xiao</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-6683-3416</orcidid></search><sort><creationdate>20250124</creationdate><title>Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means</title><author>Zhang, Yuhang ; Wu, Xiaofeng ; Xu, Jiawei ; Ning, Zihao ; Han, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-e6e25224b258d3bb756cd6ee485096dd7a48c716bd15a896bdac1e47a85010f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Chinese operas</topic><topic>Classification</topic><topic>Cluster Analysis</topic><topic>Clustering</topic><topic>Correlation</topic><topic>Cross correlation</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Digitization</topic><topic>Fuzzy Logic</topic><topic>Humans</topic><topic>Interdisciplinary research</topic><topic>Interdisciplinary studies</topic><topic>Interpolation</topic><topic>Mathematical optimization</topic><topic>Melody</topic><topic>Methods</topic><topic>Music</topic><topic>Music in education</topic><topic>Noise</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Singing</topic><topic>Social Sciences</topic><topic>Trends</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuhang</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Xu, Jiawei</creatorcontrib><creatorcontrib>Ning, Zihao</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuhang</au><au>Wu, Xiaofeng</au><au>Xu, Jiawei</au><au>Ning, Zihao</au><au>Han, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-24</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0313065</spage><pages>e0313065-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39854432</pmid><doi>10.1371/journal.pone.0313065</doi><tpages>e0313065</tpages><orcidid>https://orcid.org/0009-0004-6683-3416</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2025-01, Vol.20 (1), p.e0313065 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3159629602 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Analysis Biology and Life Sciences Chinese operas Classification Cluster Analysis Clustering Correlation Cross correlation Data analysis Datasets Digitization Fuzzy Logic Humans Interdisciplinary research Interdisciplinary studies Interpolation Mathematical optimization Melody Methods Music Music in education Noise Optimization Particle swarm optimization Physical Sciences Research and Analysis Methods Singing Social Sciences Trends Uncertainty |
title | Clustering analysis of Yue opera character tone trends based on quantum particle swarm optimization for fuzzy C-means |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20analysis%20of%20Yue%20opera%20character%20tone%20trends%20based%20on%20quantum%20particle%20swarm%20optimization%20for%20fuzzy%20C-means&rft.jtitle=PloS%20one&rft.au=Zhang,%20Yuhang&rft.date=2025-01-24&rft.volume=20&rft.issue=1&rft.spage=e0313065&rft.pages=e0313065-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0313065&rft_dat=%3Cgale_plos_%3EA824728797%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159629602&rft_id=info:pmid/39854432&rft_galeid=A824728797&rft_doaj_id=oai_doaj_org_article_57e313f1809c442eb0efed59409f86fb&rfr_iscdi=true |