CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization
This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code b...
Gespeichert in:
Veröffentlicht in: | PloS one 2025-01, Vol.20 (1), p.e0310634 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0310634 |
container_title | PloS one |
container_volume | 20 |
creator | Rao, Gowtham A Shoaibi, Azza Makadia, Rupa Hardin, Jill Swerdel, Joel Weaver, James Voss, Erica A Conover, Mitchell M Fortin, Stephen Sena, Anthony G Knoll, Chris Hughes, Nigel Gilbert, James P Blacketer, Clair Andryc, Alan DeFalco, Frank Molinaro, Anthony Reps, Jenna Schuemie, Martijn J Ryan, Patrick B |
description | This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics.
The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources.
By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity.
We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study.
Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs. |
doi_str_mv | 10.1371/journal.pone.0310634 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3156419035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823804730</galeid><doaj_id>oai_doaj_org_article_cebba8004a044fdd94a60fecdc29755e</doaj_id><sourcerecordid>A823804730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHcfpBVXLa6VKRbyu1sSZPIo3DnayUA58dryPVhvUA4rkWDO_-Xs8nomix5TMKcvoq0s7ug7MvLcdzgmjRDB-JzqmOUtmIiHs7sH-KHrg_SUhKZNC3I-OWC4Tkub5cfRnYRvrhjct1J31Q6v9afyxwc4OVz3GuAYzwtDaLgbtrPcxxB0OP637HtsqtoVHt976wcQlDBD7kJVGH4--7eq4t_1otv6ZwTWaWDfgQA_o2t9b88PoXgXG46P9_yT6-u7tl8WH2fnF--Xi7Hymucz4TFAQkGcpFJAWPNU6ZSQjVSEJFASTROqyEiJPMtC6EJJySfOwloIgE7nM2Un0dKfbG-vVvnReMZoKTnPC0kAsd0Rp4VL1rl2Bu1IWWrU1WFcrcKE-BpXGogBJCAfCeVWWOQdBKtSlTkKOKQat1_vTxmKFpcZucGAmolNP1zaqtmtFacayjLGg8GKv4OyPEf2gVq3XaAx0aMdd4lkuJd8k_uwf9Pbr7akawg3arrLhYL0RVWcyYZLwjJFAzW-hwlfiqtWh0ao22CcBLycBgRnw11DD6L1afv70_-zFtyn7_IBtEMzQeGvGTc_4Kch34LY9HVY3VaZEbebkuhpqMydqPych7MnhC90EXQ8G-wv45BBM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156419035</pqid></control><display><type>article</type><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</creator><creatorcontrib>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</creatorcontrib><description>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics.
The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources.
By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity.
We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study.
Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310634</identifier><identifier>PMID: 39820599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer Disease - diagnosis ; Alzheimer Disease - epidemiology ; Alzheimer's disease ; Biology and Life Sciences ; Chronic conditions ; Cohort Studies ; Computer and Information Sciences ; Data sources ; Diabetes ; Diagnosis ; Female ; Genotype & phenotype ; Humans ; Incidence ; Information Sources ; Laboratory tests ; Lupus Erythematosus, Systemic - diagnosis ; Lupus Erythematosus, Systemic - epidemiology ; Male ; Medical records ; Medicine and Health Sciences ; Neurodegenerative diseases ; Open source software ; Phenotype ; Phenotypes ; Population ; Population studies ; Public domain ; Public software ; Source code ; Systemic lupus erythematosus ; Technology application ; Trends</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0310634</ispartof><rights>Copyright: © 2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Rao et al 2025 Rao et al</rights><rights>2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</cites><orcidid>0000-0003-2682-2187 ; 0000-0001-8630-5347 ; 0000-0003-2294-3459 ; 0000-0002-6976-2594 ; 0000-0002-4949-7236 ; 0000-0003-0755-5191 ; 0000-0002-2970-0778 ; 0000-0002-0817-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39820599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Gowtham A</creatorcontrib><creatorcontrib>Shoaibi, Azza</creatorcontrib><creatorcontrib>Makadia, Rupa</creatorcontrib><creatorcontrib>Hardin, Jill</creatorcontrib><creatorcontrib>Swerdel, Joel</creatorcontrib><creatorcontrib>Weaver, James</creatorcontrib><creatorcontrib>Voss, Erica A</creatorcontrib><creatorcontrib>Conover, Mitchell M</creatorcontrib><creatorcontrib>Fortin, Stephen</creatorcontrib><creatorcontrib>Sena, Anthony G</creatorcontrib><creatorcontrib>Knoll, Chris</creatorcontrib><creatorcontrib>Hughes, Nigel</creatorcontrib><creatorcontrib>Gilbert, James P</creatorcontrib><creatorcontrib>Blacketer, Clair</creatorcontrib><creatorcontrib>Andryc, Alan</creatorcontrib><creatorcontrib>DeFalco, Frank</creatorcontrib><creatorcontrib>Molinaro, Anthony</creatorcontrib><creatorcontrib>Reps, Jenna</creatorcontrib><creatorcontrib>Schuemie, Martijn J</creatorcontrib><creatorcontrib>Ryan, Patrick B</creatorcontrib><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics.
The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources.
By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity.
We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study.
Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</description><subject>Algorithms</subject><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - epidemiology</subject><subject>Alzheimer's disease</subject><subject>Biology and Life Sciences</subject><subject>Chronic conditions</subject><subject>Cohort Studies</subject><subject>Computer and Information Sciences</subject><subject>Data sources</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Incidence</subject><subject>Information Sources</subject><subject>Laboratory tests</subject><subject>Lupus Erythematosus, Systemic - diagnosis</subject><subject>Lupus Erythematosus, Systemic - epidemiology</subject><subject>Male</subject><subject>Medical records</subject><subject>Medicine and Health Sciences</subject><subject>Neurodegenerative diseases</subject><subject>Open source software</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Population studies</subject><subject>Public domain</subject><subject>Public software</subject><subject>Source code</subject><subject>Systemic lupus erythematosus</subject><subject>Technology application</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHcfpBVXLa6VKRbyu1sSZPIo3DnayUA58dryPVhvUA4rkWDO_-Xs8nomix5TMKcvoq0s7ug7MvLcdzgmjRDB-JzqmOUtmIiHs7sH-KHrg_SUhKZNC3I-OWC4Tkub5cfRnYRvrhjct1J31Q6v9afyxwc4OVz3GuAYzwtDaLgbtrPcxxB0OP637HtsqtoVHt976wcQlDBD7kJVGH4--7eq4t_1otv6ZwTWaWDfgQA_o2t9b88PoXgXG46P9_yT6-u7tl8WH2fnF--Xi7Hymucz4TFAQkGcpFJAWPNU6ZSQjVSEJFASTROqyEiJPMtC6EJJySfOwloIgE7nM2Un0dKfbG-vVvnReMZoKTnPC0kAsd0Rp4VL1rl2Bu1IWWrU1WFcrcKE-BpXGogBJCAfCeVWWOQdBKtSlTkKOKQat1_vTxmKFpcZucGAmolNP1zaqtmtFacayjLGg8GKv4OyPEf2gVq3XaAx0aMdd4lkuJd8k_uwf9Pbr7akawg3arrLhYL0RVWcyYZLwjJFAzW-hwlfiqtWh0ao22CcBLycBgRnw11DD6L1afv70_-zFtyn7_IBtEMzQeGvGTc_4Kch34LY9HVY3VaZEbebkuhpqMydqPych7MnhC90EXQ8G-wv45BBM</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>Rao, Gowtham A</creator><creator>Shoaibi, Azza</creator><creator>Makadia, Rupa</creator><creator>Hardin, Jill</creator><creator>Swerdel, Joel</creator><creator>Weaver, James</creator><creator>Voss, Erica A</creator><creator>Conover, Mitchell M</creator><creator>Fortin, Stephen</creator><creator>Sena, Anthony G</creator><creator>Knoll, Chris</creator><creator>Hughes, Nigel</creator><creator>Gilbert, James P</creator><creator>Blacketer, Clair</creator><creator>Andryc, Alan</creator><creator>DeFalco, Frank</creator><creator>Molinaro, Anthony</creator><creator>Reps, Jenna</creator><creator>Schuemie, Martijn J</creator><creator>Ryan, Patrick B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2682-2187</orcidid><orcidid>https://orcid.org/0000-0001-8630-5347</orcidid><orcidid>https://orcid.org/0000-0003-2294-3459</orcidid><orcidid>https://orcid.org/0000-0002-6976-2594</orcidid><orcidid>https://orcid.org/0000-0002-4949-7236</orcidid><orcidid>https://orcid.org/0000-0003-0755-5191</orcidid><orcidid>https://orcid.org/0000-0002-2970-0778</orcidid><orcidid>https://orcid.org/0000-0002-0817-5361</orcidid></search><sort><creationdate>20250116</creationdate><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><author>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - epidemiology</topic><topic>Alzheimer's disease</topic><topic>Biology and Life Sciences</topic><topic>Chronic conditions</topic><topic>Cohort Studies</topic><topic>Computer and Information Sciences</topic><topic>Data sources</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Incidence</topic><topic>Information Sources</topic><topic>Laboratory tests</topic><topic>Lupus Erythematosus, Systemic - diagnosis</topic><topic>Lupus Erythematosus, Systemic - epidemiology</topic><topic>Male</topic><topic>Medical records</topic><topic>Medicine and Health Sciences</topic><topic>Neurodegenerative diseases</topic><topic>Open source software</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Population studies</topic><topic>Public domain</topic><topic>Public software</topic><topic>Source code</topic><topic>Systemic lupus erythematosus</topic><topic>Technology application</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Gowtham A</creatorcontrib><creatorcontrib>Shoaibi, Azza</creatorcontrib><creatorcontrib>Makadia, Rupa</creatorcontrib><creatorcontrib>Hardin, Jill</creatorcontrib><creatorcontrib>Swerdel, Joel</creatorcontrib><creatorcontrib>Weaver, James</creatorcontrib><creatorcontrib>Voss, Erica A</creatorcontrib><creatorcontrib>Conover, Mitchell M</creatorcontrib><creatorcontrib>Fortin, Stephen</creatorcontrib><creatorcontrib>Sena, Anthony G</creatorcontrib><creatorcontrib>Knoll, Chris</creatorcontrib><creatorcontrib>Hughes, Nigel</creatorcontrib><creatorcontrib>Gilbert, James P</creatorcontrib><creatorcontrib>Blacketer, Clair</creatorcontrib><creatorcontrib>Andryc, Alan</creatorcontrib><creatorcontrib>DeFalco, Frank</creatorcontrib><creatorcontrib>Molinaro, Anthony</creatorcontrib><creatorcontrib>Reps, Jenna</creatorcontrib><creatorcontrib>Schuemie, Martijn J</creatorcontrib><creatorcontrib>Ryan, Patrick B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Gowtham A</au><au>Shoaibi, Azza</au><au>Makadia, Rupa</au><au>Hardin, Jill</au><au>Swerdel, Joel</au><au>Weaver, James</au><au>Voss, Erica A</au><au>Conover, Mitchell M</au><au>Fortin, Stephen</au><au>Sena, Anthony G</au><au>Knoll, Chris</au><au>Hughes, Nigel</au><au>Gilbert, James P</au><au>Blacketer, Clair</au><au>Andryc, Alan</au><au>DeFalco, Frank</au><au>Molinaro, Anthony</au><au>Reps, Jenna</au><au>Schuemie, Martijn J</au><au>Ryan, Patrick B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-16</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0310634</spage><pages>e0310634-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics.
The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources.
By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity.
We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study.
Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39820599</pmid><doi>10.1371/journal.pone.0310634</doi><tpages>e0310634</tpages><orcidid>https://orcid.org/0000-0003-2682-2187</orcidid><orcidid>https://orcid.org/0000-0001-8630-5347</orcidid><orcidid>https://orcid.org/0000-0003-2294-3459</orcidid><orcidid>https://orcid.org/0000-0002-6976-2594</orcidid><orcidid>https://orcid.org/0000-0002-4949-7236</orcidid><orcidid>https://orcid.org/0000-0003-0755-5191</orcidid><orcidid>https://orcid.org/0000-0002-2970-0778</orcidid><orcidid>https://orcid.org/0000-0002-0817-5361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2025-01, Vol.20 (1), p.e0310634 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3156419035 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Alzheimer Disease - diagnosis Alzheimer Disease - epidemiology Alzheimer's disease Biology and Life Sciences Chronic conditions Cohort Studies Computer and Information Sciences Data sources Diabetes Diagnosis Female Genotype & phenotype Humans Incidence Information Sources Laboratory tests Lupus Erythematosus, Systemic - diagnosis Lupus Erythematosus, Systemic - epidemiology Male Medical records Medicine and Health Sciences Neurodegenerative diseases Open source software Phenotype Phenotypes Population Population studies Public domain Public software Source code Systemic lupus erythematosus Technology application Trends |
title | CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CohortDiagnostics:%20Phenotype%20evaluation%20across%20a%20network%20of%20observational%20data%20sources%20using%20population-level%20characterization&rft.jtitle=PloS%20one&rft.au=Rao,%20Gowtham%20A&rft.date=2025-01-16&rft.volume=20&rft.issue=1&rft.spage=e0310634&rft.pages=e0310634-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310634&rft_dat=%3Cgale_plos_%3EA823804730%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156419035&rft_id=info:pmid/39820599&rft_galeid=A823804730&rft_doaj_id=oai_doaj_org_article_cebba8004a044fdd94a60fecdc29755e&rfr_iscdi=true |