CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization

This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2025-01, Vol.20 (1), p.e0310634
Hauptverfasser: Rao, Gowtham A, Shoaibi, Azza, Makadia, Rupa, Hardin, Jill, Swerdel, Joel, Weaver, James, Voss, Erica A, Conover, Mitchell M, Fortin, Stephen, Sena, Anthony G, Knoll, Chris, Hughes, Nigel, Gilbert, James P, Blacketer, Clair, Andryc, Alan, DeFalco, Frank, Molinaro, Anthony, Reps, Jenna, Schuemie, Martijn J, Ryan, Patrick B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e0310634
container_title PloS one
container_volume 20
creator Rao, Gowtham A
Shoaibi, Azza
Makadia, Rupa
Hardin, Jill
Swerdel, Joel
Weaver, James
Voss, Erica A
Conover, Mitchell M
Fortin, Stephen
Sena, Anthony G
Knoll, Chris
Hughes, Nigel
Gilbert, James P
Blacketer, Clair
Andryc, Alan
DeFalco, Frank
Molinaro, Anthony
Reps, Jenna
Schuemie, Martijn J
Ryan, Patrick B
description This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources. By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity. We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study. Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.
doi_str_mv 10.1371/journal.pone.0310634
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3156419035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823804730</galeid><doaj_id>oai_doaj_org_article_cebba8004a044fdd94a60fecdc29755e</doaj_id><sourcerecordid>A823804730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHcfpBVXLa6VKRbyu1sSZPIo3DnayUA58dryPVhvUA4rkWDO_-Xs8nomix5TMKcvoq0s7ug7MvLcdzgmjRDB-JzqmOUtmIiHs7sH-KHrg_SUhKZNC3I-OWC4Tkub5cfRnYRvrhjct1J31Q6v9afyxwc4OVz3GuAYzwtDaLgbtrPcxxB0OP637HtsqtoVHt976wcQlDBD7kJVGH4--7eq4t_1otv6ZwTWaWDfgQA_o2t9b88PoXgXG46P9_yT6-u7tl8WH2fnF--Xi7Hymucz4TFAQkGcpFJAWPNU6ZSQjVSEJFASTROqyEiJPMtC6EJJySfOwloIgE7nM2Un0dKfbG-vVvnReMZoKTnPC0kAsd0Rp4VL1rl2Bu1IWWrU1WFcrcKE-BpXGogBJCAfCeVWWOQdBKtSlTkKOKQat1_vTxmKFpcZucGAmolNP1zaqtmtFacayjLGg8GKv4OyPEf2gVq3XaAx0aMdd4lkuJd8k_uwf9Pbr7akawg3arrLhYL0RVWcyYZLwjJFAzW-hwlfiqtWh0ao22CcBLycBgRnw11DD6L1afv70_-zFtyn7_IBtEMzQeGvGTc_4Kch34LY9HVY3VaZEbebkuhpqMydqPych7MnhC90EXQ8G-wv45BBM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156419035</pqid></control><display><type>article</type><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</creator><creatorcontrib>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</creatorcontrib><description>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources. By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity. We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study. Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310634</identifier><identifier>PMID: 39820599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alzheimer Disease - diagnosis ; Alzheimer Disease - epidemiology ; Alzheimer's disease ; Biology and Life Sciences ; Chronic conditions ; Cohort Studies ; Computer and Information Sciences ; Data sources ; Diabetes ; Diagnosis ; Female ; Genotype &amp; phenotype ; Humans ; Incidence ; Information Sources ; Laboratory tests ; Lupus Erythematosus, Systemic - diagnosis ; Lupus Erythematosus, Systemic - epidemiology ; Male ; Medical records ; Medicine and Health Sciences ; Neurodegenerative diseases ; Open source software ; Phenotype ; Phenotypes ; Population ; Population studies ; Public domain ; Public software ; Source code ; Systemic lupus erythematosus ; Technology application ; Trends</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0310634</ispartof><rights>Copyright: © 2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Rao et al 2025 Rao et al</rights><rights>2025 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</cites><orcidid>0000-0003-2682-2187 ; 0000-0001-8630-5347 ; 0000-0003-2294-3459 ; 0000-0002-6976-2594 ; 0000-0002-4949-7236 ; 0000-0003-0755-5191 ; 0000-0002-2970-0778 ; 0000-0002-0817-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39820599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rao, Gowtham A</creatorcontrib><creatorcontrib>Shoaibi, Azza</creatorcontrib><creatorcontrib>Makadia, Rupa</creatorcontrib><creatorcontrib>Hardin, Jill</creatorcontrib><creatorcontrib>Swerdel, Joel</creatorcontrib><creatorcontrib>Weaver, James</creatorcontrib><creatorcontrib>Voss, Erica A</creatorcontrib><creatorcontrib>Conover, Mitchell M</creatorcontrib><creatorcontrib>Fortin, Stephen</creatorcontrib><creatorcontrib>Sena, Anthony G</creatorcontrib><creatorcontrib>Knoll, Chris</creatorcontrib><creatorcontrib>Hughes, Nigel</creatorcontrib><creatorcontrib>Gilbert, James P</creatorcontrib><creatorcontrib>Blacketer, Clair</creatorcontrib><creatorcontrib>Andryc, Alan</creatorcontrib><creatorcontrib>DeFalco, Frank</creatorcontrib><creatorcontrib>Molinaro, Anthony</creatorcontrib><creatorcontrib>Reps, Jenna</creatorcontrib><creatorcontrib>Schuemie, Martijn J</creatorcontrib><creatorcontrib>Ryan, Patrick B</creatorcontrib><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources. By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity. We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study. Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</description><subject>Algorithms</subject><subject>Alzheimer Disease - diagnosis</subject><subject>Alzheimer Disease - epidemiology</subject><subject>Alzheimer's disease</subject><subject>Biology and Life Sciences</subject><subject>Chronic conditions</subject><subject>Cohort Studies</subject><subject>Computer and Information Sciences</subject><subject>Data sources</subject><subject>Diabetes</subject><subject>Diagnosis</subject><subject>Female</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Incidence</subject><subject>Information Sources</subject><subject>Laboratory tests</subject><subject>Lupus Erythematosus, Systemic - diagnosis</subject><subject>Lupus Erythematosus, Systemic - epidemiology</subject><subject>Male</subject><subject>Medical records</subject><subject>Medicine and Health Sciences</subject><subject>Neurodegenerative diseases</subject><subject>Open source software</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Population</subject><subject>Population studies</subject><subject>Public domain</subject><subject>Public software</subject><subject>Source code</subject><subject>Systemic lupus erythematosus</subject><subject>Technology application</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOHcfpBVXLa6VKRbyu1sSZPIo3DnayUA58dryPVhvUA4rkWDO_-Xs8nomix5TMKcvoq0s7ug7MvLcdzgmjRDB-JzqmOUtmIiHs7sH-KHrg_SUhKZNC3I-OWC4Tkub5cfRnYRvrhjct1J31Q6v9afyxwc4OVz3GuAYzwtDaLgbtrPcxxB0OP637HtsqtoVHt976wcQlDBD7kJVGH4--7eq4t_1otv6ZwTWaWDfgQA_o2t9b88PoXgXG46P9_yT6-u7tl8WH2fnF--Xi7Hymucz4TFAQkGcpFJAWPNU6ZSQjVSEJFASTROqyEiJPMtC6EJJySfOwloIgE7nM2Un0dKfbG-vVvnReMZoKTnPC0kAsd0Rp4VL1rl2Bu1IWWrU1WFcrcKE-BpXGogBJCAfCeVWWOQdBKtSlTkKOKQat1_vTxmKFpcZucGAmolNP1zaqtmtFacayjLGg8GKv4OyPEf2gVq3XaAx0aMdd4lkuJd8k_uwf9Pbr7akawg3arrLhYL0RVWcyYZLwjJFAzW-hwlfiqtWh0ao22CcBLycBgRnw11DD6L1afv70_-zFtyn7_IBtEMzQeGvGTc_4Kch34LY9HVY3VaZEbebkuhpqMydqPych7MnhC90EXQ8G-wv45BBM</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>Rao, Gowtham A</creator><creator>Shoaibi, Azza</creator><creator>Makadia, Rupa</creator><creator>Hardin, Jill</creator><creator>Swerdel, Joel</creator><creator>Weaver, James</creator><creator>Voss, Erica A</creator><creator>Conover, Mitchell M</creator><creator>Fortin, Stephen</creator><creator>Sena, Anthony G</creator><creator>Knoll, Chris</creator><creator>Hughes, Nigel</creator><creator>Gilbert, James P</creator><creator>Blacketer, Clair</creator><creator>Andryc, Alan</creator><creator>DeFalco, Frank</creator><creator>Molinaro, Anthony</creator><creator>Reps, Jenna</creator><creator>Schuemie, Martijn J</creator><creator>Ryan, Patrick B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2682-2187</orcidid><orcidid>https://orcid.org/0000-0001-8630-5347</orcidid><orcidid>https://orcid.org/0000-0003-2294-3459</orcidid><orcidid>https://orcid.org/0000-0002-6976-2594</orcidid><orcidid>https://orcid.org/0000-0002-4949-7236</orcidid><orcidid>https://orcid.org/0000-0003-0755-5191</orcidid><orcidid>https://orcid.org/0000-0002-2970-0778</orcidid><orcidid>https://orcid.org/0000-0002-0817-5361</orcidid></search><sort><creationdate>20250116</creationdate><title>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</title><author>Rao, Gowtham A ; Shoaibi, Azza ; Makadia, Rupa ; Hardin, Jill ; Swerdel, Joel ; Weaver, James ; Voss, Erica A ; Conover, Mitchell M ; Fortin, Stephen ; Sena, Anthony G ; Knoll, Chris ; Hughes, Nigel ; Gilbert, James P ; Blacketer, Clair ; Andryc, Alan ; DeFalco, Frank ; Molinaro, Anthony ; Reps, Jenna ; Schuemie, Martijn J ; Ryan, Patrick B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4874-61a6a975aba5b45cc53070fb80ab0e228cdf66927accb6814819814d60e369893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Alzheimer Disease - diagnosis</topic><topic>Alzheimer Disease - epidemiology</topic><topic>Alzheimer's disease</topic><topic>Biology and Life Sciences</topic><topic>Chronic conditions</topic><topic>Cohort Studies</topic><topic>Computer and Information Sciences</topic><topic>Data sources</topic><topic>Diabetes</topic><topic>Diagnosis</topic><topic>Female</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Incidence</topic><topic>Information Sources</topic><topic>Laboratory tests</topic><topic>Lupus Erythematosus, Systemic - diagnosis</topic><topic>Lupus Erythematosus, Systemic - epidemiology</topic><topic>Male</topic><topic>Medical records</topic><topic>Medicine and Health Sciences</topic><topic>Neurodegenerative diseases</topic><topic>Open source software</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Population</topic><topic>Population studies</topic><topic>Public domain</topic><topic>Public software</topic><topic>Source code</topic><topic>Systemic lupus erythematosus</topic><topic>Technology application</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Gowtham A</creatorcontrib><creatorcontrib>Shoaibi, Azza</creatorcontrib><creatorcontrib>Makadia, Rupa</creatorcontrib><creatorcontrib>Hardin, Jill</creatorcontrib><creatorcontrib>Swerdel, Joel</creatorcontrib><creatorcontrib>Weaver, James</creatorcontrib><creatorcontrib>Voss, Erica A</creatorcontrib><creatorcontrib>Conover, Mitchell M</creatorcontrib><creatorcontrib>Fortin, Stephen</creatorcontrib><creatorcontrib>Sena, Anthony G</creatorcontrib><creatorcontrib>Knoll, Chris</creatorcontrib><creatorcontrib>Hughes, Nigel</creatorcontrib><creatorcontrib>Gilbert, James P</creatorcontrib><creatorcontrib>Blacketer, Clair</creatorcontrib><creatorcontrib>Andryc, Alan</creatorcontrib><creatorcontrib>DeFalco, Frank</creatorcontrib><creatorcontrib>Molinaro, Anthony</creatorcontrib><creatorcontrib>Reps, Jenna</creatorcontrib><creatorcontrib>Schuemie, Martijn J</creatorcontrib><creatorcontrib>Ryan, Patrick B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Gowtham A</au><au>Shoaibi, Azza</au><au>Makadia, Rupa</au><au>Hardin, Jill</au><au>Swerdel, Joel</au><au>Weaver, James</au><au>Voss, Erica A</au><au>Conover, Mitchell M</au><au>Fortin, Stephen</au><au>Sena, Anthony G</au><au>Knoll, Chris</au><au>Hughes, Nigel</au><au>Gilbert, James P</au><au>Blacketer, Clair</au><au>Andryc, Alan</au><au>DeFalco, Frank</au><au>Molinaro, Anthony</au><au>Reps, Jenna</au><au>Schuemie, Martijn J</au><au>Ryan, Patrick B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-16</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0310634</spage><pages>e0310634-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper introduces a novel framework for evaluating phenotype algorithms (PAs) using the open-source tool, Cohort Diagnostics. The method is based on several diagnostic criteria to evaluate a patient cohort returned by a PA. Diagnostics include estimates of incidence rate, index date entry code breakdown, and prevalence of all observed clinical events prior to, on, and after index date. We test our framework by evaluating one PA for systemic lupus erythematosus (SLE) and two PAs for Alzheimer's disease (AD) across 10 different observational data sources. By utilizing CohortDiagnostics, we found that the population-level characteristics of individuals in the cohort of SLE closely matched the disease's anticipated clinical profile. Specifically, the incidence rate of SLE was consistently higher in occurrence among females. Moreover, expected clinical events like laboratory tests, treatments, and repeated diagnoses were also observed. For AD, although one PA identified considerably fewer patients, absence of notable differences in clinical characteristics between the two cohorts suggested similar specificity. We provide a practical and data-driven approach to evaluate PAs, using two clinical diseases as examples, across a network of OMOP data sources. Cohort Diagnostics can ensure the subjects identified by a specific PA align with those intended for inclusion in a research study. Diagnostics based on large-scale population-level characterization can offer insights into the misclassification errors of PAs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39820599</pmid><doi>10.1371/journal.pone.0310634</doi><tpages>e0310634</tpages><orcidid>https://orcid.org/0000-0003-2682-2187</orcidid><orcidid>https://orcid.org/0000-0001-8630-5347</orcidid><orcidid>https://orcid.org/0000-0003-2294-3459</orcidid><orcidid>https://orcid.org/0000-0002-6976-2594</orcidid><orcidid>https://orcid.org/0000-0002-4949-7236</orcidid><orcidid>https://orcid.org/0000-0003-0755-5191</orcidid><orcidid>https://orcid.org/0000-0002-2970-0778</orcidid><orcidid>https://orcid.org/0000-0002-0817-5361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2025-01, Vol.20 (1), p.e0310634
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3156419035
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Alzheimer Disease - diagnosis
Alzheimer Disease - epidemiology
Alzheimer's disease
Biology and Life Sciences
Chronic conditions
Cohort Studies
Computer and Information Sciences
Data sources
Diabetes
Diagnosis
Female
Genotype & phenotype
Humans
Incidence
Information Sources
Laboratory tests
Lupus Erythematosus, Systemic - diagnosis
Lupus Erythematosus, Systemic - epidemiology
Male
Medical records
Medicine and Health Sciences
Neurodegenerative diseases
Open source software
Phenotype
Phenotypes
Population
Population studies
Public domain
Public software
Source code
Systemic lupus erythematosus
Technology application
Trends
title CohortDiagnostics: Phenotype evaluation across a network of observational data sources using population-level characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CohortDiagnostics:%20Phenotype%20evaluation%20across%20a%20network%20of%20observational%20data%20sources%20using%20population-level%20characterization&rft.jtitle=PloS%20one&rft.au=Rao,%20Gowtham%20A&rft.date=2025-01-16&rft.volume=20&rft.issue=1&rft.spage=e0310634&rft.pages=e0310634-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310634&rft_dat=%3Cgale_plos_%3EA823804730%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156419035&rft_id=info:pmid/39820599&rft_galeid=A823804730&rft_doaj_id=oai_doaj_org_article_cebba8004a044fdd94a60fecdc29755e&rfr_iscdi=true