Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants
Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour g...
Gespeichert in:
Veröffentlicht in: | PloS one 2025-01, Vol.20 (1), p.e0313485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e0313485 |
container_title | PloS one |
container_volume | 20 |
creator | Patiño-González, M Camila Echeverri-Cuartas, Claudia E Torijano-Gutiérrez, Sandra Naranjo-Rios, Sandra Milena Agudelo, Natalia A |
description | Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents. |
doi_str_mv | 10.1371/journal.pone.0313485 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3152977612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A822770444</galeid><doaj_id>oai_doaj_org_article_44c44fa2ce81468fb6a809c50d88c92e</doaj_id><sourcerecordid>A822770444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-410d1903c642b3be7389533f3d4990e01dc8b09c9543bfedc9ba5b77123311293</originalsourceid><addsrcrecordid>eNqNk1tr2zAUx83YWLts32BsgsHYHpLpZkt6GqXsEigEdnsVsiw7CraUWnZpty8_qXFLPPow_CDr6Hduf-lk2UsEV4gw9GHnx96pdrX3zqwgQYTy_FF2igTBywJD8vjo_yR7FsIOwpzwonianRDBWE5yepr92ewH29nfarDeAV-DYWtA0xvjQLhxcRNsSObGtxVwyvneVwGMwboGqMvR-DEAcz30Sg8J2xvTmgqEWBtoRnWlgApA3e61SYByMdG1reIanmdPatUG82JaF9nPz59-nH9dXmy-rM_PLpaacpYvKYIVEpDoguKSlIYRLnJCalJRIaCBqNK8hEKLnJKyNpUWpcpLxhAmBCEsyCJ7fYi7b32Qk25BEpTjqEMRuUW2PhCVVzu5722n-hvplZW3Bt83UvWD1a2RlGpKa4W14YgWvC4LxWPyHFaca4FNjPVxyjaWXazGuKhOOws6P3F2Kxt_JRFiUGBGY4R3U4TeR4nDIDsbtGlb5ZLeqXDCU395RN_8gz7c3kQ1KnZgXe3ThaWg8oxjzBikNKVdPUDFrzKd1fGV1TbaZw7vZw6RGeJbaNQYglx___b_7ObXnH17xG6Naodt8O2YnmiYg_QA6t6H0Jv6XmUEZRqSOzVkGhI5DUl0e3V8Q_dOd1NB_gIpywy9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152977612</pqid></control><display><type>article</type><title>Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Patiño-González, M Camila ; Echeverri-Cuartas, Claudia E ; Torijano-Gutiérrez, Sandra ; Naranjo-Rios, Sandra Milena ; Agudelo, Natalia A</creator><contributor>Casado Rojo, Santiago</contributor><creatorcontrib>Patiño-González, M Camila ; Echeverri-Cuartas, Claudia E ; Torijano-Gutiérrez, Sandra ; Naranjo-Rios, Sandra Milena ; Agudelo, Natalia A ; Casado Rojo, Santiago</creatorcontrib><description>Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0313485</identifier><identifier>PMID: 39775354</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antioxidants ; Antioxidants - chemistry ; Ascorbic acid ; Biology and Life Sciences ; Biosynthesis ; Chemical compounds ; Chemical synthesis ; Cocoa ; Colorimetry ; Design factors ; Design of experiments ; Engineering and Technology ; Experimental design ; Factorial design ; Flavonoids ; Fruits ; Gold ; Gold - chemistry ; Green Chemistry Technology - methods ; Guava ; Methods ; Nanoparticles ; Nanorods ; Nanotubes - chemistry ; Optimization ; Organic acids ; Phenols ; Physical Sciences ; Phytochemicals ; Plant Extracts - chemistry ; Plasmons ; Polyphenols ; Psidium - chemistry ; Pulp ; Reagents ; Reducing agents ; Research and Analysis Methods ; Response surface methodology ; Silver ; Statistical models ; Sulfonic acid ; Time dependence</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0313485</ispartof><rights>Copyright: © 2025 Patiño-González et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Patiño-González et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Patiño-González et al 2025 Patiño-González et al</rights><rights>2025 Patiño-González et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4875-410d1903c642b3be7389533f3d4990e01dc8b09c9543bfedc9ba5b77123311293</cites><orcidid>0000-0002-7264-8303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709274/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709274/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39775354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Casado Rojo, Santiago</contributor><creatorcontrib>Patiño-González, M Camila</creatorcontrib><creatorcontrib>Echeverri-Cuartas, Claudia E</creatorcontrib><creatorcontrib>Torijano-Gutiérrez, Sandra</creatorcontrib><creatorcontrib>Naranjo-Rios, Sandra Milena</creatorcontrib><creatorcontrib>Agudelo, Natalia A</creatorcontrib><title>Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents.</description><subject>Antioxidants</subject><subject>Antioxidants - chemistry</subject><subject>Ascorbic acid</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chemical compounds</subject><subject>Chemical synthesis</subject><subject>Cocoa</subject><subject>Colorimetry</subject><subject>Design factors</subject><subject>Design of experiments</subject><subject>Engineering and Technology</subject><subject>Experimental design</subject><subject>Factorial design</subject><subject>Flavonoids</subject><subject>Fruits</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Green Chemistry Technology - methods</subject><subject>Guava</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotubes - chemistry</subject><subject>Optimization</subject><subject>Organic acids</subject><subject>Phenols</subject><subject>Physical Sciences</subject><subject>Phytochemicals</subject><subject>Plant Extracts - chemistry</subject><subject>Plasmons</subject><subject>Polyphenols</subject><subject>Psidium - chemistry</subject><subject>Pulp</subject><subject>Reagents</subject><subject>Reducing agents</subject><subject>Research and Analysis Methods</subject><subject>Response surface methodology</subject><subject>Silver</subject><subject>Statistical models</subject><subject>Sulfonic acid</subject><subject>Time dependence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1tr2zAUx83YWLts32BsgsHYHpLpZkt6GqXsEigEdnsVsiw7CraUWnZpty8_qXFLPPow_CDr6Hduf-lk2UsEV4gw9GHnx96pdrX3zqwgQYTy_FF2igTBywJD8vjo_yR7FsIOwpzwonianRDBWE5yepr92ewH29nfarDeAV-DYWtA0xvjQLhxcRNsSObGtxVwyvneVwGMwboGqMvR-DEAcz30Sg8J2xvTmgqEWBtoRnWlgApA3e61SYByMdG1reIanmdPatUG82JaF9nPz59-nH9dXmy-rM_PLpaacpYvKYIVEpDoguKSlIYRLnJCalJRIaCBqNK8hEKLnJKyNpUWpcpLxhAmBCEsyCJ7fYi7b32Qk25BEpTjqEMRuUW2PhCVVzu5722n-hvplZW3Bt83UvWD1a2RlGpKa4W14YgWvC4LxWPyHFaca4FNjPVxyjaWXazGuKhOOws6P3F2Kxt_JRFiUGBGY4R3U4TeR4nDIDsbtGlb5ZLeqXDCU395RN_8gz7c3kQ1KnZgXe3ThaWg8oxjzBikNKVdPUDFrzKd1fGV1TbaZw7vZw6RGeJbaNQYglx___b_7ObXnH17xG6Naodt8O2YnmiYg_QA6t6H0Jv6XmUEZRqSOzVkGhI5DUl0e3V8Q_dOd1NB_gIpywy9</recordid><startdate>20250108</startdate><enddate>20250108</enddate><creator>Patiño-González, M Camila</creator><creator>Echeverri-Cuartas, Claudia E</creator><creator>Torijano-Gutiérrez, Sandra</creator><creator>Naranjo-Rios, Sandra Milena</creator><creator>Agudelo, Natalia A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7264-8303</orcidid></search><sort><creationdate>20250108</creationdate><title>Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants</title><author>Patiño-González, M Camila ; Echeverri-Cuartas, Claudia E ; Torijano-Gutiérrez, Sandra ; Naranjo-Rios, Sandra Milena ; Agudelo, Natalia A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-410d1903c642b3be7389533f3d4990e01dc8b09c9543bfedc9ba5b77123311293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Antioxidants</topic><topic>Antioxidants - chemistry</topic><topic>Ascorbic acid</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chemical compounds</topic><topic>Chemical synthesis</topic><topic>Cocoa</topic><topic>Colorimetry</topic><topic>Design factors</topic><topic>Design of experiments</topic><topic>Engineering and Technology</topic><topic>Experimental design</topic><topic>Factorial design</topic><topic>Flavonoids</topic><topic>Fruits</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Green Chemistry Technology - methods</topic><topic>Guava</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotubes - chemistry</topic><topic>Optimization</topic><topic>Organic acids</topic><topic>Phenols</topic><topic>Physical Sciences</topic><topic>Phytochemicals</topic><topic>Plant Extracts - chemistry</topic><topic>Plasmons</topic><topic>Polyphenols</topic><topic>Psidium - chemistry</topic><topic>Pulp</topic><topic>Reagents</topic><topic>Reducing agents</topic><topic>Research and Analysis Methods</topic><topic>Response surface methodology</topic><topic>Silver</topic><topic>Statistical models</topic><topic>Sulfonic acid</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patiño-González, M Camila</creatorcontrib><creatorcontrib>Echeverri-Cuartas, Claudia E</creatorcontrib><creatorcontrib>Torijano-Gutiérrez, Sandra</creatorcontrib><creatorcontrib>Naranjo-Rios, Sandra Milena</creatorcontrib><creatorcontrib>Agudelo, Natalia A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patiño-González, M Camila</au><au>Echeverri-Cuartas, Claudia E</au><au>Torijano-Gutiérrez, Sandra</au><au>Naranjo-Rios, Sandra Milena</au><au>Agudelo, Natalia A</au><au>Casado Rojo, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-08</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0313485</spage><pages>e0313485-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days. Four colorimetric techniques were used: total phenol, ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric reducing antioxidant power (FRAP), and DPPH (1,1-diphenyl-2-picrylhydrazyl). Subsequently, in stage 2, the selected aqueous extract was used, and two response surface designs were performed. The objective of this study was to find a model equation that would indicate the optimal parameters for obtaining AuNRs with a surface plasmon band at 808 nm, with possible applications in the health field. The results of the antioxidant capacity experiments were analyzed in Minitab® using a multilevel factorial design, and the peel exhibited the highest antioxidant capacity. Subsequently, the biosynthesis of AuNRs proceeded using a 5-factor response surface experimental design as input variables (concentration in mM of gold, silver, extract, NaBH4, and reaction time in hours) and longitudinal plasmon (LSPR) as output variables. The AuNRs were approximately 30 nm in size with an LSPR between 700 and 800 nm. Statistical model evaluation revealed a dependence between gold and time and gold-silver factors. Finally, antioxidant capacity was used to select the part (peel or pulp) of sour guava that could be used as a weak reducing agent. Moreover, the utility of surface-response methodology was explored to optimize the synthesis of AuNRs using green agents.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39775354</pmid><doi>10.1371/journal.pone.0313485</doi><tpages>e0313485</tpages><orcidid>https://orcid.org/0000-0002-7264-8303</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2025-01, Vol.20 (1), p.e0313485 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3152977612 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Antioxidants Antioxidants - chemistry Ascorbic acid Biology and Life Sciences Biosynthesis Chemical compounds Chemical synthesis Cocoa Colorimetry Design factors Design of experiments Engineering and Technology Experimental design Factorial design Flavonoids Fruits Gold Gold - chemistry Green Chemistry Technology - methods Guava Methods Nanoparticles Nanorods Nanotubes - chemistry Optimization Organic acids Phenols Physical Sciences Phytochemicals Plant Extracts - chemistry Plasmons Polyphenols Psidium - chemistry Pulp Reagents Reducing agents Research and Analysis Methods Response surface methodology Silver Statistical models Sulfonic acid Time dependence |
title | Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20green%20synthesis%20of%20gold%20nanorods%20using%20aqueous%20extract%20of%20peeled%20sour%20guava%20as%20a%20source%20of%20antioxidants&rft.jtitle=PloS%20one&rft.au=Pati%C3%B1o-Gonz%C3%A1lez,%20M%20Camila&rft.date=2025-01-08&rft.volume=20&rft.issue=1&rft.spage=e0313485&rft.pages=e0313485-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0313485&rft_dat=%3Cgale_plos_%3EA822770444%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152977612&rft_id=info:pmid/39775354&rft_galeid=A822770444&rft_doaj_id=oai_doaj_org_article_44c44fa2ce81468fb6a809c50d88c92e&rfr_iscdi=true |