Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data

Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current litera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2025-01, Vol.20 (1), p.e0316458
Hauptverfasser: Liu, Qihai, Lee, Kevin H, Kang, Hyun Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e0316458
container_title PloS one
container_volume 20
creator Liu, Qihai
Lee, Kevin H
Kang, Hyun Bin
description Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current literature, it is common to assume that the high-dimensional data come from a homogeneous source and follow a parametric graphical model. However, in real-world context the observed data often come from different sources and may have heterogeneous dependencies across the whole population. In addition, for time-dependent data, many work has been done to estimate discrete correlation structures at each time point but less work has been done to estimate global correlation structures over all time points. In this work, we propose finite mixtures of functional graphical models (MFGM), which detect the heterogeneous subgroups of the population and estimate single graph for each subgroup by considering the correlation structures. We further design an estimation method for MFGM using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso (fglasso). Numerically, we demonstrate the performance of our method in simulation studies and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from an alcoholism study.
doi_str_mv 10.1371/journal.pone.0316458
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3151103306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A822151497</galeid><doaj_id>oai_doaj_org_article_f4b961c55c5d454580d77f9acd39a684</doaj_id><sourcerecordid>A822151497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-73db23f45d01aa237f46693181b2fbf820bc824b4d0d279ccd3dc370c58f6b603</originalsourceid><addsrcrecordid>eNqNk1Fr1TAUx4sobrv6DUQLgujDvSZNm7a-yBhOLwwG6nwNaXLS5tImd0k6tm9v7m43bmUPkoeE5Hf-J-efnCR5g9EKkxJ_3tjRGd6vttbAChFM86J6lhzjmmRLmiHy_GB9lJx4v0GoIBWlL5MjUpc5RZQcJ-ZcGx0gHfRtGB341KpUjUYEbaN42jq-7bSIq8FK6P2X9MoIewNOmzbtIICzLRiwo08lbMFIMEJHFW3STrfdUuoBjN9rSR74q-SF4r2H19O8SK7Ov_0--7G8uPy-Pju9WIqizMKyJLLJiMoLiTDnGSlVTmlNcIWbTDWqylAjqixvcolkVtZCSCIFKZEoKkUbisgiebfX3fbWs8kqzwguMEaExNIXyXpPSMs3bOv0wN0ds1yz-w3rWsZd0KIHpvKmplgUhShkXkSbkSxLVfOYtea0yqPW1ynb2AwgBZjgeD8TnZ8Y3bHW3jCMaZ3XZRUVPk4Kzl6P4AMbtBfQ9_ze3P3F6wrjMqLv_0GfLm-iWh4r0EbZmFjsRNlplWURjHkjtXqCikPCoEX8WErH_VnAp1lAZALchpaP3rP1r5__z17-mbMfDtgOeB86b_tx9w39HMz3oHDWewfq0WWM2K4vHtxgu75gU1_EsLeHL_QY9NAI5C-iaAkV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151103306</pqid></control><display><type>article</type><title>Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Qihai ; Lee, Kevin H ; Kang, Hyun Bin</creator><creatorcontrib>Liu, Qihai ; Lee, Kevin H ; Kang, Hyun Bin</creatorcontrib><description>Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current literature, it is common to assume that the high-dimensional data come from a homogeneous source and follow a parametric graphical model. However, in real-world context the observed data often come from different sources and may have heterogeneous dependencies across the whole population. In addition, for time-dependent data, many work has been done to estimate discrete correlation structures at each time point but less work has been done to estimate global correlation structures over all time points. In this work, we propose finite mixtures of functional graphical models (MFGM), which detect the heterogeneous subgroups of the population and estimate single graph for each subgroup by considering the correlation structures. We further design an estimation method for MFGM using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso (fglasso). Numerically, we demonstrate the performance of our method in simulation studies and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from an alcoholism study.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0316458</identifier><identifier>PMID: 39746063</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Computer Simulation ; Correlation ; EEG ; Electroencephalography - methods ; Estimates ; Functional analysis ; Graphic methods ; Humans ; Medicine and Health Sciences ; Methods ; Mixtures ; Models, Statistical ; Optimization ; Physical Sciences ; Polytopes ; Population (statistical) ; Random variables ; Research and Analysis Methods ; Social Sciences ; Statistical analysis ; Statistical models ; Subgroups ; Time dependence</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0316458</ispartof><rights>Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Liu et al 2025 Liu et al</rights><rights>2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-73db23f45d01aa237f46693181b2fbf820bc824b4d0d279ccd3dc370c58f6b603</cites><orcidid>0000-0002-6792-0552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694978/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694978/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39746063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Qihai</creatorcontrib><creatorcontrib>Lee, Kevin H</creatorcontrib><creatorcontrib>Kang, Hyun Bin</creatorcontrib><title>Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current literature, it is common to assume that the high-dimensional data come from a homogeneous source and follow a parametric graphical model. However, in real-world context the observed data often come from different sources and may have heterogeneous dependencies across the whole population. In addition, for time-dependent data, many work has been done to estimate discrete correlation structures at each time point but less work has been done to estimate global correlation structures over all time points. In this work, we propose finite mixtures of functional graphical models (MFGM), which detect the heterogeneous subgroups of the population and estimate single graph for each subgroup by considering the correlation structures. We further design an estimation method for MFGM using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso (fglasso). Numerically, we demonstrate the performance of our method in simulation studies and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from an alcoholism study.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Correlation</subject><subject>EEG</subject><subject>Electroencephalography - methods</subject><subject>Estimates</subject><subject>Functional analysis</subject><subject>Graphic methods</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mixtures</subject><subject>Models, Statistical</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Polytopes</subject><subject>Population (statistical)</subject><subject>Random variables</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Subgroups</subject><subject>Time dependence</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1Fr1TAUx4sobrv6DUQLgujDvSZNm7a-yBhOLwwG6nwNaXLS5tImd0k6tm9v7m43bmUPkoeE5Hf-J-efnCR5g9EKkxJ_3tjRGd6vttbAChFM86J6lhzjmmRLmiHy_GB9lJx4v0GoIBWlL5MjUpc5RZQcJ-ZcGx0gHfRtGB341KpUjUYEbaN42jq-7bSIq8FK6P2X9MoIewNOmzbtIICzLRiwo08lbMFIMEJHFW3STrfdUuoBjN9rSR74q-SF4r2H19O8SK7Ov_0--7G8uPy-Pju9WIqizMKyJLLJiMoLiTDnGSlVTmlNcIWbTDWqylAjqixvcolkVtZCSCIFKZEoKkUbisgiebfX3fbWs8kqzwguMEaExNIXyXpPSMs3bOv0wN0ds1yz-w3rWsZd0KIHpvKmplgUhShkXkSbkSxLVfOYtea0yqPW1ynb2AwgBZjgeD8TnZ8Y3bHW3jCMaZ3XZRUVPk4Kzl6P4AMbtBfQ9_ze3P3F6wrjMqLv_0GfLm-iWh4r0EbZmFjsRNlplWURjHkjtXqCikPCoEX8WErH_VnAp1lAZALchpaP3rP1r5__z17-mbMfDtgOeB86b_tx9w39HMz3oHDWewfq0WWM2K4vHtxgu75gU1_EsLeHL_QY9NAI5C-iaAkV</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Liu, Qihai</creator><creator>Lee, Kevin H</creator><creator>Kang, Hyun Bin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6792-0552</orcidid></search><sort><creationdate>20250102</creationdate><title>Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data</title><author>Liu, Qihai ; Lee, Kevin H ; Kang, Hyun Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-73db23f45d01aa237f46693181b2fbf820bc824b4d0d279ccd3dc370c58f6b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Correlation</topic><topic>EEG</topic><topic>Electroencephalography - methods</topic><topic>Estimates</topic><topic>Functional analysis</topic><topic>Graphic methods</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mixtures</topic><topic>Models, Statistical</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Polytopes</topic><topic>Population (statistical)</topic><topic>Random variables</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Subgroups</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qihai</creatorcontrib><creatorcontrib>Lee, Kevin H</creatorcontrib><creatorcontrib>Kang, Hyun Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qihai</au><au>Lee, Kevin H</au><au>Kang, Hyun Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-02</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0316458</spage><pages>e0316458-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Graphical models have been widely used to explicitly capture the statistical relationships among the variables of interest in the form of a graph. The central question in these models is to infer significant conditional dependencies or independencies from high-dimensional data. In the current literature, it is common to assume that the high-dimensional data come from a homogeneous source and follow a parametric graphical model. However, in real-world context the observed data often come from different sources and may have heterogeneous dependencies across the whole population. In addition, for time-dependent data, many work has been done to estimate discrete correlation structures at each time point but less work has been done to estimate global correlation structures over all time points. In this work, we propose finite mixtures of functional graphical models (MFGM), which detect the heterogeneous subgroups of the population and estimate single graph for each subgroup by considering the correlation structures. We further design an estimation method for MFGM using an iterative Expectation-Maximization (EM) algorithm and functional graphical lasso (fglasso). Numerically, we demonstrate the performance of our method in simulation studies and apply our method to high-dimensional electroencephalogram (EEG) dataset taken from an alcoholism study.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39746063</pmid><doi>10.1371/journal.pone.0316458</doi><tpages>e0316458</tpages><orcidid>https://orcid.org/0000-0002-6792-0552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2025-01, Vol.20 (1), p.e0316458
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3151103306
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Biology and Life Sciences
Computer Simulation
Correlation
EEG
Electroencephalography - methods
Estimates
Functional analysis
Graphic methods
Humans
Medicine and Health Sciences
Methods
Mixtures
Models, Statistical
Optimization
Physical Sciences
Polytopes
Population (statistical)
Random variables
Research and Analysis Methods
Social Sciences
Statistical analysis
Statistical models
Subgroups
Time dependence
title Finite mixtures of functional graphical models: Uncovering heterogeneous dependencies in high-dimensional data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20mixtures%20of%20functional%20graphical%20models:%20Uncovering%20heterogeneous%20dependencies%20in%20high-dimensional%20data&rft.jtitle=PloS%20one&rft.au=Liu,%20Qihai&rft.date=2025-01-02&rft.volume=20&rft.issue=1&rft.spage=e0316458&rft.pages=e0316458-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0316458&rft_dat=%3Cgale_plos_%3EA822151497%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151103306&rft_id=info:pmid/39746063&rft_galeid=A822151497&rft_doaj_id=oai_doaj_org_article_f4b961c55c5d454580d77f9acd39a684&rfr_iscdi=true