Experimental economics for machine learning-a methodological contribution on lie detection
In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experim...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0314806 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0314806 |
container_title | PloS one |
container_volume | 19 |
creator | Bershadskyy, Dmitri Dinges, Laslo Fiedler, Marc-André Al-Hamadi, Ayoub Ostermaier, Nina Weimann, Joachim |
description | In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experimental economics can contribute to enabling substantial improvement of technology. At the same time, ML opens up new questions for experimental research because it can generate previously impossible observations. To demonstrate this, we focus on algorithms trained to detect lies. Such algorithms are of high relevance for research in economics as they deal with the ability to retrieve otherwise private information. We deduce that most of the commonly applied data sets for the training of lie detection algorithms could be improved by applying the toolbox of experimental economics. To illustrate this, we replicate the "lies in disguise-experiment" by Fischbacher and Föllmi-Heusi with a modification regarding monitoring. The modified setup guarantees a certain level of privacy from the experimenter yet allows to record the subjects as they lie to the camera. Despite monitoring, our results indicate the same lying behavior as in the original experiment. Yet, our experiment allows an individual-level analysis of experimental data and the generation of a lie detection algorithm with an accuracy rate of 67%, which we present in this article. |
doi_str_mv | 10.1371/journal.pone.0314806 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3150493725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821919510</galeid><doaj_id>oai_doaj_org_article_6d8794f5b5d14ae5acb98c948d972dd6</doaj_id><sourcerecordid>A821919510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4876-9d922765009fa399388f29bcef0b2cbc640937a8913c810a957d4ccd601d7ae93</originalsourceid><addsrcrecordid>eNqNk99r1TAUx4sobk7_A9GCIPpwr0nTpMmTjDH1wmDgrwdfQpqc9makzV3SyvzvTXe7cSt7kAZaTj7ne3p-ZdlLjNaYVPjDlR9Dr9x653tYI4JLjtij7BgLUqxYgcjjg--j7FmMVwhRwhl7mh0RURHBGD3Ofp3f7CDYDvpBuRy0731ndcwbH_JO6a3tIXegQm_7dqXyDoatN9751urEJ3wIth4H6_s8HWchNzCAngzPsyeNchFezO-T7Men8-9nX1YXl583Z6cXK13yiq2EEUVRMYqQaBQRgnDeFKLW0KC60LVmJRKkUlxgojlGStDKlFobhrCpFAhykr3e6-6cj3IuS5QEU1Qmz4ImYrMnjFdXcpfSVeGP9MrKW4MPrVRhsNqBZIZXomxoTQ0uFVCla8G1KLkRVWEMS1of52hj3YHRqXBBuYXo8qa3W9n63xJjxquKoqTwblYI_nqEOMjORg3OqR78uP9xWqACTcHe_IM-nN5MtSplYPvGp8B6EpWnvMACC4qnsOsHqPQYSB1PQ9TYZF84vF84TM2Gm6FVY4xy8-3r_7OXP5fs2wN2C8oN2-jd7RDFJVjuQR18jAGa-ypjJKcduKuGnHZAzjuQ3F4dduje6W7oyV9hoAF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150493725</pqid></control><display><type>article</type><title>Experimental economics for machine learning-a methodological contribution on lie detection</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bershadskyy, Dmitri ; Dinges, Laslo ; Fiedler, Marc-André ; Al-Hamadi, Ayoub ; Ostermaier, Nina ; Weimann, Joachim</creator><contributor>Wojciechowski, Bartosz Wojciech</contributor><creatorcontrib>Bershadskyy, Dmitri ; Dinges, Laslo ; Fiedler, Marc-André ; Al-Hamadi, Ayoub ; Ostermaier, Nina ; Weimann, Joachim ; Wojciechowski, Bartosz Wojciech</creatorcontrib><description>In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experimental economics can contribute to enabling substantial improvement of technology. At the same time, ML opens up new questions for experimental research because it can generate previously impossible observations. To demonstrate this, we focus on algorithms trained to detect lies. Such algorithms are of high relevance for research in economics as they deal with the ability to retrieve otherwise private information. We deduce that most of the commonly applied data sets for the training of lie detection algorithms could be improved by applying the toolbox of experimental economics. To illustrate this, we replicate the "lies in disguise-experiment" by Fischbacher and Föllmi-Heusi with a modification regarding monitoring. The modified setup guarantees a certain level of privacy from the experimenter yet allows to record the subjects as they lie to the camera. Despite monitoring, our results indicate the same lying behavior as in the original experiment. Yet, our experiment allows an individual-level analysis of experimental data and the generation of a lie detection algorithm with an accuracy rate of 67%, which we present in this article.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0314806</identifier><identifier>PMID: 39739665</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Biology and Life Sciences ; Computer and Information Sciences ; Datasets ; Deception ; Economic aspects ; Economics ; Engineering and Technology ; Experimental research ; Experiments ; Female ; Humans ; Information retrieval ; Learning algorithms ; Lie Detection ; Machine Learning ; Male ; Medicine and Health Sciences ; Monitoring ; Physical Sciences ; Privacy ; Research and Analysis Methods ; Research methodology ; Social Sciences ; Technological change</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0314806</ispartof><rights>Copyright: © 2024 Bershadskyy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Bershadskyy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Bershadskyy et al 2024 Bershadskyy et al</rights><rights>2024 Bershadskyy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4876-9d922765009fa399388f29bcef0b2cbc640937a8913c810a957d4ccd601d7ae93</cites><orcidid>0000-0002-5606-4033 ; 0000-0002-9856-1548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687750/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687750/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39739665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wojciechowski, Bartosz Wojciech</contributor><creatorcontrib>Bershadskyy, Dmitri</creatorcontrib><creatorcontrib>Dinges, Laslo</creatorcontrib><creatorcontrib>Fiedler, Marc-André</creatorcontrib><creatorcontrib>Al-Hamadi, Ayoub</creatorcontrib><creatorcontrib>Ostermaier, Nina</creatorcontrib><creatorcontrib>Weimann, Joachim</creatorcontrib><title>Experimental economics for machine learning-a methodological contribution on lie detection</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experimental economics can contribute to enabling substantial improvement of technology. At the same time, ML opens up new questions for experimental research because it can generate previously impossible observations. To demonstrate this, we focus on algorithms trained to detect lies. Such algorithms are of high relevance for research in economics as they deal with the ability to retrieve otherwise private information. We deduce that most of the commonly applied data sets for the training of lie detection algorithms could be improved by applying the toolbox of experimental economics. To illustrate this, we replicate the "lies in disguise-experiment" by Fischbacher and Föllmi-Heusi with a modification regarding monitoring. The modified setup guarantees a certain level of privacy from the experimenter yet allows to record the subjects as they lie to the camera. Despite monitoring, our results indicate the same lying behavior as in the original experiment. Yet, our experiment allows an individual-level analysis of experimental data and the generation of a lie detection algorithm with an accuracy rate of 67%, which we present in this article.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Deception</subject><subject>Economic aspects</subject><subject>Economics</subject><subject>Engineering and Technology</subject><subject>Experimental research</subject><subject>Experiments</subject><subject>Female</subject><subject>Humans</subject><subject>Information retrieval</subject><subject>Learning algorithms</subject><subject>Lie Detection</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Monitoring</subject><subject>Physical Sciences</subject><subject>Privacy</subject><subject>Research and Analysis Methods</subject><subject>Research methodology</subject><subject>Social Sciences</subject><subject>Technological change</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r1TAUx4sobk7_A9GCIPpwr0nTpMmTjDH1wmDgrwdfQpqc9makzV3SyvzvTXe7cSt7kAZaTj7ne3p-ZdlLjNaYVPjDlR9Dr9x653tYI4JLjtij7BgLUqxYgcjjg--j7FmMVwhRwhl7mh0RURHBGD3Ofp3f7CDYDvpBuRy0731ndcwbH_JO6a3tIXegQm_7dqXyDoatN9751urEJ3wIth4H6_s8HWchNzCAngzPsyeNchFezO-T7Men8-9nX1YXl583Z6cXK13yiq2EEUVRMYqQaBQRgnDeFKLW0KC60LVmJRKkUlxgojlGStDKlFobhrCpFAhykr3e6-6cj3IuS5QEU1Qmz4ImYrMnjFdXcpfSVeGP9MrKW4MPrVRhsNqBZIZXomxoTQ0uFVCla8G1KLkRVWEMS1of52hj3YHRqXBBuYXo8qa3W9n63xJjxquKoqTwblYI_nqEOMjORg3OqR78uP9xWqACTcHe_IM-nN5MtSplYPvGp8B6EpWnvMACC4qnsOsHqPQYSB1PQ9TYZF84vF84TM2Gm6FVY4xy8-3r_7OXP5fs2wN2C8oN2-jd7RDFJVjuQR18jAGa-ypjJKcduKuGnHZAzjuQ3F4dduje6W7oyV9hoAF8</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Bershadskyy, Dmitri</creator><creator>Dinges, Laslo</creator><creator>Fiedler, Marc-André</creator><creator>Al-Hamadi, Ayoub</creator><creator>Ostermaier, Nina</creator><creator>Weimann, Joachim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5606-4033</orcidid><orcidid>https://orcid.org/0000-0002-9856-1548</orcidid></search><sort><creationdate>20241231</creationdate><title>Experimental economics for machine learning-a methodological contribution on lie detection</title><author>Bershadskyy, Dmitri ; Dinges, Laslo ; Fiedler, Marc-André ; Al-Hamadi, Ayoub ; Ostermaier, Nina ; Weimann, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4876-9d922765009fa399388f29bcef0b2cbc640937a8913c810a957d4ccd601d7ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Deception</topic><topic>Economic aspects</topic><topic>Economics</topic><topic>Engineering and Technology</topic><topic>Experimental research</topic><topic>Experiments</topic><topic>Female</topic><topic>Humans</topic><topic>Information retrieval</topic><topic>Learning algorithms</topic><topic>Lie Detection</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Monitoring</topic><topic>Physical Sciences</topic><topic>Privacy</topic><topic>Research and Analysis Methods</topic><topic>Research methodology</topic><topic>Social Sciences</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bershadskyy, Dmitri</creatorcontrib><creatorcontrib>Dinges, Laslo</creatorcontrib><creatorcontrib>Fiedler, Marc-André</creatorcontrib><creatorcontrib>Al-Hamadi, Ayoub</creatorcontrib><creatorcontrib>Ostermaier, Nina</creatorcontrib><creatorcontrib>Weimann, Joachim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bershadskyy, Dmitri</au><au>Dinges, Laslo</au><au>Fiedler, Marc-André</au><au>Al-Hamadi, Ayoub</au><au>Ostermaier, Nina</au><au>Weimann, Joachim</au><au>Wojciechowski, Bartosz Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental economics for machine learning-a methodological contribution on lie detection</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0314806</spage><pages>e0314806-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In this paper, we investigate how technology has contributed to experimental economics in the past and illustrate how experimental economics can contribute to technological progress in the future. We argue that with machine learning (ML), a new technology is at hand, where for the first time experimental economics can contribute to enabling substantial improvement of technology. At the same time, ML opens up new questions for experimental research because it can generate previously impossible observations. To demonstrate this, we focus on algorithms trained to detect lies. Such algorithms are of high relevance for research in economics as they deal with the ability to retrieve otherwise private information. We deduce that most of the commonly applied data sets for the training of lie detection algorithms could be improved by applying the toolbox of experimental economics. To illustrate this, we replicate the "lies in disguise-experiment" by Fischbacher and Föllmi-Heusi with a modification regarding monitoring. The modified setup guarantees a certain level of privacy from the experimenter yet allows to record the subjects as they lie to the camera. Despite monitoring, our results indicate the same lying behavior as in the original experiment. Yet, our experiment allows an individual-level analysis of experimental data and the generation of a lie detection algorithm with an accuracy rate of 67%, which we present in this article.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39739665</pmid><doi>10.1371/journal.pone.0314806</doi><tpages>e0314806</tpages><orcidid>https://orcid.org/0000-0002-5606-4033</orcidid><orcidid>https://orcid.org/0000-0002-9856-1548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0314806 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3150493725 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Algorithms Analysis Artificial intelligence Biology and Life Sciences Computer and Information Sciences Datasets Deception Economic aspects Economics Engineering and Technology Experimental research Experiments Female Humans Information retrieval Learning algorithms Lie Detection Machine Learning Male Medicine and Health Sciences Monitoring Physical Sciences Privacy Research and Analysis Methods Research methodology Social Sciences Technological change |
title | Experimental economics for machine learning-a methodological contribution on lie detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20economics%20for%20machine%20learning-a%20methodological%20contribution%20on%20lie%20detection&rft.jtitle=PloS%20one&rft.au=Bershadskyy,%20Dmitri&rft.date=2024-12-31&rft.volume=19&rft.issue=12&rft.spage=e0314806&rft.pages=e0314806-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0314806&rft_dat=%3Cgale_plos_%3EA821919510%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150493725&rft_id=info:pmid/39739665&rft_galeid=A821919510&rft_doaj_id=oai_doaj_org_article_6d8794f5b5d14ae5acb98c948d972dd6&rfr_iscdi=true |