Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning

Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-12, Vol.19 (12), p.e0311495
Hauptverfasser: Lu, Yue, Su, Yi, Wang, Nan, Li, Dongyue, Zhang, Huichao, Xu, Hongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0311495
container_title PloS one
container_volume 19
creator Lu, Yue
Su, Yi
Wang, Nan
Li, Dongyue
Zhang, Huichao
Xu, Hongyu
description Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.
doi_str_mv 10.1371/journal.pone.0311495
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3150493633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821919556</galeid><doaj_id>oai_doaj_org_article_58826e19c19841d0a3850deb514f32bc</doaj_id><sourcerecordid>A821919556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-de7b37561dd795cfc87e707b59a6c0a5537f2c45dbc82d5c1318c9879db325d33</originalsourceid><addsrcrecordid>eNqNk12L3CAUhkNp6W63_QelDRRKezFTjTHRq7Is_RhYGOjXrRg9yTg4OqvJ0vn3NZ3sMil7UbxQj8_7qkdPlr3EaIlJjT9s_RCctMu9d7BEBOOS00fZOeakWFQFIo9PxmfZsxi3CFHCquppdkZ4TXhF2XlmVxpcb1qjZG-8y32brxedPSgfD_YYCpAGoPMOHMRcOp3HoekP-zQxLh-sgpDAW8iVt6Y3MW9kTHhS7qTaGAe5BRmccd3z7EkrbYQXU3-R_fz86cfV18X1-svq6vJ6oUpW04WGuiE1rbDWNaeqVayGGtUN5bJSSFJK6rZQJdWNYoWmChPMFGc11w0pqCbkInt99N1bH8WUqCgIpqjkpCIjsToS2sut2Aezk-EgvDTib8CHTsjQG2VBUMaKCjBXmLMSayQJo0hDQ3HZkqJRyevjtNvQ7ECrlM8g7cx0vuLMRnT-VmBcsbqiPDm8mxyCvxkg9mJnogJrpQM_HA9OC8wxSuibf9CHrzdRnUw3MK71aWM1mopLNhpxSqtELR-gUtOwMyp9q9ak-EzwfiZITA-_-04OMYrV92__z65_zdm3J-wGpO030dth_H5xDpZHUAUfY4D2PssYibEq7rIhxqoQU1Uk2avTF7oX3ZUB-QOcwwfM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150493633</pqid></control><display><type>article</type><title>Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Yue ; Su, Yi ; Wang, Nan ; Li, Dongyue ; Zhang, Huichao ; Xu, Hongyu</creator><creatorcontrib>Lu, Yue ; Su, Yi ; Wang, Nan ; Li, Dongyue ; Zhang, Huichao ; Xu, Hongyu</creatorcontrib><description>Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0311495</identifier><identifier>PMID: 39739658</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>ADAMTS-1 protein ; Analysis ; Antigens ; Bioinformatics ; Biology and Life Sciences ; Colitis, Ulcerative - genetics ; Colitis, Ulcerative - metabolism ; Colorectal cancer ; Colorectal carcinoma ; Datasets ; Development and progression ; Disease ; Gene expression ; Genes ; Genetic aspects ; Glycosylation ; Health aspects ; Humans ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Learning algorithms ; Machine Learning ; Medicine and Health Sciences ; Metabolism ; O-GlcNAcylation ; Pathogenesis ; Proteins ; Risk factors ; Software ; Support vector machines ; Transcription factors ; Ulcerative colitis</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0311495</ispartof><rights>Copyright: © 2024 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Lu et al 2024 Lu et al</rights><rights>2024 Lu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4875-de7b37561dd795cfc87e707b59a6c0a5537f2c45dbc82d5c1318c9879db325d33</cites><orcidid>0009-0006-0310-4763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687659/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687659/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39739658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Dongyue</creatorcontrib><creatorcontrib>Zhang, Huichao</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><title>Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.</description><subject>ADAMTS-1 protein</subject><subject>Analysis</subject><subject>Antigens</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Colitis, Ulcerative - genetics</subject><subject>Colitis, Ulcerative - metabolism</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Disease</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glycosylation</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>O-GlcNAcylation</subject><subject>Pathogenesis</subject><subject>Proteins</subject><subject>Risk factors</subject><subject>Software</subject><subject>Support vector machines</subject><subject>Transcription factors</subject><subject>Ulcerative colitis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L3CAUhkNp6W63_QelDRRKezFTjTHRq7Is_RhYGOjXrRg9yTg4OqvJ0vn3NZ3sMil7UbxQj8_7qkdPlr3EaIlJjT9s_RCctMu9d7BEBOOS00fZOeakWFQFIo9PxmfZsxi3CFHCquppdkZ4TXhF2XlmVxpcb1qjZG-8y32brxedPSgfD_YYCpAGoPMOHMRcOp3HoekP-zQxLh-sgpDAW8iVt6Y3MW9kTHhS7qTaGAe5BRmccd3z7EkrbYQXU3-R_fz86cfV18X1-svq6vJ6oUpW04WGuiE1rbDWNaeqVayGGtUN5bJSSFJK6rZQJdWNYoWmChPMFGc11w0pqCbkInt99N1bH8WUqCgIpqjkpCIjsToS2sut2Aezk-EgvDTib8CHTsjQG2VBUMaKCjBXmLMSayQJo0hDQ3HZkqJRyevjtNvQ7ECrlM8g7cx0vuLMRnT-VmBcsbqiPDm8mxyCvxkg9mJnogJrpQM_HA9OC8wxSuibf9CHrzdRnUw3MK71aWM1mopLNhpxSqtELR-gUtOwMyp9q9ak-EzwfiZITA-_-04OMYrV92__z65_zdm3J-wGpO030dth_H5xDpZHUAUfY4D2PssYibEq7rIhxqoQU1Uk2avTF7oX3ZUB-QOcwwfM</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Lu, Yue</creator><creator>Su, Yi</creator><creator>Wang, Nan</creator><creator>Li, Dongyue</creator><creator>Zhang, Huichao</creator><creator>Xu, Hongyu</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-0310-4763</orcidid></search><sort><creationdate>20241231</creationdate><title>Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning</title><author>Lu, Yue ; Su, Yi ; Wang, Nan ; Li, Dongyue ; Zhang, Huichao ; Xu, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-de7b37561dd795cfc87e707b59a6c0a5537f2c45dbc82d5c1318c9879db325d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ADAMTS-1 protein</topic><topic>Analysis</topic><topic>Antigens</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Colitis, Ulcerative - genetics</topic><topic>Colitis, Ulcerative - metabolism</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Disease</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glycosylation</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>O-GlcNAcylation</topic><topic>Pathogenesis</topic><topic>Proteins</topic><topic>Risk factors</topic><topic>Software</topic><topic>Support vector machines</topic><topic>Transcription factors</topic><topic>Ulcerative colitis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yue</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>Li, Dongyue</creatorcontrib><creatorcontrib>Zhang, Huichao</creatorcontrib><creatorcontrib>Xu, Hongyu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yue</au><au>Su, Yi</au><au>Wang, Nan</au><au>Li, Dongyue</au><au>Zhang, Huichao</au><au>Xu, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0311495</spage><pages>e0311495-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39739658</pmid><doi>10.1371/journal.pone.0311495</doi><tpages>e0311495</tpages><orcidid>https://orcid.org/0009-0006-0310-4763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-12, Vol.19 (12), p.e0311495
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3150493633
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects ADAMTS-1 protein
Analysis
Antigens
Bioinformatics
Biology and Life Sciences
Colitis, Ulcerative - genetics
Colitis, Ulcerative - metabolism
Colorectal cancer
Colorectal carcinoma
Datasets
Development and progression
Disease
Gene expression
Genes
Genetic aspects
Glycosylation
Health aspects
Humans
Inflammatory bowel disease
Inflammatory bowel diseases
Learning algorithms
Machine Learning
Medicine and Health Sciences
Metabolism
O-GlcNAcylation
Pathogenesis
Proteins
Risk factors
Software
Support vector machines
Transcription factors
Ulcerative colitis
title Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20O-glycosylation%20related%20genes%20and%20subtypes%20in%20ulcerative%20colitis%20based%20on%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Lu,%20Yue&rft.date=2024-12-31&rft.volume=19&rft.issue=12&rft.spage=e0311495&rft.pages=e0311495-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0311495&rft_dat=%3Cgale_plos_%3EA821919556%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150493633&rft_id=info:pmid/39739658&rft_galeid=A821919556&rft_doaj_id=oai_doaj_org_article_58826e19c19841d0a3850deb514f32bc&rfr_iscdi=true