Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0315762 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0315762 |
container_title | PloS one |
container_volume | 19 |
creator | Viet Cuong, Dinh Lalić, Branislava Petrić, Mina Thanh Binh, Nguyen Roantree, Mark |
description | Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems. |
doi_str_mv | 10.1371/journal.pone.0315762 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3148792484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821090844</galeid><doaj_id>oai_doaj_org_article_9d1cb36125ff45b19b67025a3c160ae1</doaj_id><sourcerecordid>A821090844</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3962-9355bc6289f31c6a1b05ad0f7977972d56b9aea59a19cb7f934c1b67addec2713</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKP2ImvpmobUGlSJb5urRPbaV0SO4uTsfLrcWhBDdoFciRbx895T_yekyTPMZpjmuN3Wz90Dup5652ZI4pZzsmD5BQLSmacIPrw6HySPAlhixCjBeePkxMqcswIwqeJWWhoe-vWabvZBavCzLrKd43RqTNDB3Xc-h---x7S3qe2aTt_a9LV5VXqY1pjf0JvvUutSxsfbgYboda3Q70P652DJoo-TR5VUAfz7LCfJV_fX325-Di7Xn1YXiyuZ5oKTmaCMlYqTgpRUaw44BIx0KjKRR4_ohkvBRhgArBQZV4Jmilc8hy0NorkmJ4lL_e6be2DPDgUJMVZkQuSFVkklntCe9jKtrMNdDvpwcrfAd-tJXS9VbWRQmNVUo4Jq6qMlVjESogwoApzBGasdn6oNpTRMGVcHw2biE5vnN3Itb-VGHPOUUaiwpuDQudvBhN62digTF2DM37Y_3hBRexbRF_9g97_vAO1hviCsZWxsBpF5aIgGAlUZCM1v4eKS5vYrThPlY3xScLbSUJkenPXr2EIQS4_f_p_dvVtyr4-YjcG6n4TfD2MwxOm4Itjq_96_GeQ6S_Vl_Pk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148792484</pqid></control><display><type>article</type><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</creator><creatorcontrib>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</creatorcontrib><description>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0315762</identifier><identifier>PMID: 39715201</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Accuracy ; Analysis ; Animals ; Aquatic insects ; Arboviruses ; Biology and Life Sciences ; Case studies ; Computational linguistics ; Computer and Information Sciences ; Culicidae - physiology ; Decomposition ; Deep learning ; Diagnosis ; Differential equations ; Disease ; Distribution ; Dynamic models ; Dynamical systems ; Ecological studies ; Inverse problems ; Language processing ; Laws, regulations and rules ; Machine learning ; Modelling ; Mortality ; Mosquitoes ; Natural language interfaces ; Neural networks ; Neural Networks, Computer ; Ordinary differential equations ; Partial differential equations ; Physical Sciences ; Physics ; Population biology ; Population Dynamics ; Population studies ; Social Sciences ; System effectiveness ; System theory ; Time domain analysis ; West Nile virus</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0315762</ispartof><rights>Copyright: © 2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Viet Cuong et al 2024 Viet Cuong et al</rights><rights>2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-7841-4809 ; 0000-0002-1329-2570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666042/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666042/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viet Cuong, Dinh</creatorcontrib><creatorcontrib>Lalić, Branislava</creatorcontrib><creatorcontrib>Petrić, Mina</creatorcontrib><creatorcontrib>Thanh Binh, Nguyen</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Analysis</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Arboviruses</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Culicidae - physiology</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Differential equations</subject><subject>Disease</subject><subject>Distribution</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Ecological studies</subject><subject>Inverse problems</subject><subject>Language processing</subject><subject>Laws, regulations and rules</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Population biology</subject><subject>Population Dynamics</subject><subject>Population studies</subject><subject>Social Sciences</subject><subject>System effectiveness</subject><subject>System theory</subject><subject>Time domain analysis</subject><subject>West Nile virus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKP2ImvpmobUGlSJb5urRPbaV0SO4uTsfLrcWhBDdoFciRbx895T_yekyTPMZpjmuN3Wz90Dup5652ZI4pZzsmD5BQLSmacIPrw6HySPAlhixCjBeePkxMqcswIwqeJWWhoe-vWabvZBavCzLrKd43RqTNDB3Xc-h---x7S3qe2aTt_a9LV5VXqY1pjf0JvvUutSxsfbgYboda3Q70P652DJoo-TR5VUAfz7LCfJV_fX325-Di7Xn1YXiyuZ5oKTmaCMlYqTgpRUaw44BIx0KjKRR4_ohkvBRhgArBQZV4Jmilc8hy0NorkmJ4lL_e6be2DPDgUJMVZkQuSFVkklntCe9jKtrMNdDvpwcrfAd-tJXS9VbWRQmNVUo4Jq6qMlVjESogwoApzBGasdn6oNpTRMGVcHw2biE5vnN3Itb-VGHPOUUaiwpuDQudvBhN62digTF2DM37Y_3hBRexbRF_9g97_vAO1hviCsZWxsBpF5aIgGAlUZCM1v4eKS5vYrThPlY3xScLbSUJkenPXr2EIQS4_f_p_dvVtyr4-YjcG6n4TfD2MwxOm4Itjq_96_GeQ6S_Vl_Pk</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Viet Cuong, Dinh</creator><creator>Lalić, Branislava</creator><creator>Petrić, Mina</creator><creator>Thanh Binh, Nguyen</creator><creator>Roantree, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-7841-4809</orcidid><orcidid>https://orcid.org/0000-0002-1329-2570</orcidid></search><sort><creationdate>20241223</creationdate><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><author>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3962-9355bc6289f31c6a1b05ad0f7977972d56b9aea59a19cb7f934c1b67addec2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Analysis</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Arboviruses</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Culicidae - physiology</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Differential equations</topic><topic>Disease</topic><topic>Distribution</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Ecological studies</topic><topic>Inverse problems</topic><topic>Language processing</topic><topic>Laws, regulations and rules</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Population biology</topic><topic>Population Dynamics</topic><topic>Population studies</topic><topic>Social Sciences</topic><topic>System effectiveness</topic><topic>System theory</topic><topic>Time domain analysis</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viet Cuong, Dinh</creatorcontrib><creatorcontrib>Lalić, Branislava</creatorcontrib><creatorcontrib>Petrić, Mina</creatorcontrib><creatorcontrib>Thanh Binh, Nguyen</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viet Cuong, Dinh</au><au>Lalić, Branislava</au><au>Petrić, Mina</au><au>Thanh Binh, Nguyen</au><au>Roantree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0315762</spage><pages>e0315762-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39715201</pmid><doi>10.1371/journal.pone.0315762</doi><tpages>e0315762</tpages><orcidid>https://orcid.org/0009-0004-7841-4809</orcidid><orcidid>https://orcid.org/0000-0002-1329-2570</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0315762 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3148792484 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Ablation Accuracy Analysis Animals Aquatic insects Arboviruses Biology and Life Sciences Case studies Computational linguistics Computer and Information Sciences Culicidae - physiology Decomposition Deep learning Diagnosis Differential equations Disease Distribution Dynamic models Dynamical systems Ecological studies Inverse problems Language processing Laws, regulations and rules Machine learning Modelling Mortality Mosquitoes Natural language interfaces Neural networks Neural Networks, Computer Ordinary differential equations Partial differential equations Physical Sciences Physics Population biology Population Dynamics Population studies Social Sciences System effectiveness System theory Time domain analysis West Nile virus |
title | Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20physics-informed%20neural%20networks%20to%20improve%20ODE%20optimization%20in%20mosquito%20population%20dynamics&rft.jtitle=PloS%20one&rft.au=Viet%20Cuong,%20Dinh&rft.date=2024-12-23&rft.volume=19&rft.issue=12&rft.spage=e0315762&rft.pages=e0315762-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0315762&rft_dat=%3Cgale_plos_%3EA821090844%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148792484&rft_id=info:pmid/39715201&rft_galeid=A821090844&rft_doaj_id=oai_doaj_org_article_9d1cb36125ff45b19b67025a3c160ae1&rfr_iscdi=true |