Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics

Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-12, Vol.19 (12), p.e0315762
Hauptverfasser: Viet Cuong, Dinh, Lalić, Branislava, Petrić, Mina, Thanh Binh, Nguyen, Roantree, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0315762
container_title PloS one
container_volume 19
creator Viet Cuong, Dinh
Lalić, Branislava
Petrić, Mina
Thanh Binh, Nguyen
Roantree, Mark
description Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
doi_str_mv 10.1371/journal.pone.0315762
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3148792484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821090844</galeid><doaj_id>oai_doaj_org_article_9d1cb36125ff45b19b67025a3c160ae1</doaj_id><sourcerecordid>A821090844</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3962-9355bc6289f31c6a1b05ad0f7977972d56b9aea59a19cb7f934c1b67addec2713</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKP2ImvpmobUGlSJb5urRPbaV0SO4uTsfLrcWhBDdoFciRbx895T_yekyTPMZpjmuN3Wz90Dup5652ZI4pZzsmD5BQLSmacIPrw6HySPAlhixCjBeePkxMqcswIwqeJWWhoe-vWabvZBavCzLrKd43RqTNDB3Xc-h---x7S3qe2aTt_a9LV5VXqY1pjf0JvvUutSxsfbgYboda3Q70P652DJoo-TR5VUAfz7LCfJV_fX325-Di7Xn1YXiyuZ5oKTmaCMlYqTgpRUaw44BIx0KjKRR4_ohkvBRhgArBQZV4Jmilc8hy0NorkmJ4lL_e6be2DPDgUJMVZkQuSFVkklntCe9jKtrMNdDvpwcrfAd-tJXS9VbWRQmNVUo4Jq6qMlVjESogwoApzBGasdn6oNpTRMGVcHw2biE5vnN3Itb-VGHPOUUaiwpuDQudvBhN62digTF2DM37Y_3hBRexbRF_9g97_vAO1hviCsZWxsBpF5aIgGAlUZCM1v4eKS5vYrThPlY3xScLbSUJkenPXr2EIQS4_f_p_dvVtyr4-YjcG6n4TfD2MwxOm4Itjq_96_GeQ6S_Vl_Pk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148792484</pqid></control><display><type>article</type><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</creator><creatorcontrib>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</creatorcontrib><description>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0315762</identifier><identifier>PMID: 39715201</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Accuracy ; Analysis ; Animals ; Aquatic insects ; Arboviruses ; Biology and Life Sciences ; Case studies ; Computational linguistics ; Computer and Information Sciences ; Culicidae - physiology ; Decomposition ; Deep learning ; Diagnosis ; Differential equations ; Disease ; Distribution ; Dynamic models ; Dynamical systems ; Ecological studies ; Inverse problems ; Language processing ; Laws, regulations and rules ; Machine learning ; Modelling ; Mortality ; Mosquitoes ; Natural language interfaces ; Neural networks ; Neural Networks, Computer ; Ordinary differential equations ; Partial differential equations ; Physical Sciences ; Physics ; Population biology ; Population Dynamics ; Population studies ; Social Sciences ; System effectiveness ; System theory ; Time domain analysis ; West Nile virus</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0315762</ispartof><rights>Copyright: © 2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Viet Cuong et al 2024 Viet Cuong et al</rights><rights>2024 Viet Cuong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-7841-4809 ; 0000-0002-1329-2570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666042/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666042/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39715201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Viet Cuong, Dinh</creatorcontrib><creatorcontrib>Lalić, Branislava</creatorcontrib><creatorcontrib>Petrić, Mina</creatorcontrib><creatorcontrib>Thanh Binh, Nguyen</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</description><subject>Ablation</subject><subject>Accuracy</subject><subject>Analysis</subject><subject>Animals</subject><subject>Aquatic insects</subject><subject>Arboviruses</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Culicidae - physiology</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Differential equations</subject><subject>Disease</subject><subject>Distribution</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Ecological studies</subject><subject>Inverse problems</subject><subject>Language processing</subject><subject>Laws, regulations and rules</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Population biology</subject><subject>Population Dynamics</subject><subject>Population studies</subject><subject>Social Sciences</subject><subject>System effectiveness</subject><subject>System theory</subject><subject>Time domain analysis</subject><subject>West Nile virus</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eKP2ImvpmobUGlSJb5urRPbaV0SO4uTsfLrcWhBDdoFciRbx895T_yekyTPMZpjmuN3Wz90Dup5652ZI4pZzsmD5BQLSmacIPrw6HySPAlhixCjBeePkxMqcswIwqeJWWhoe-vWabvZBavCzLrKd43RqTNDB3Xc-h---x7S3qe2aTt_a9LV5VXqY1pjf0JvvUutSxsfbgYboda3Q70P652DJoo-TR5VUAfz7LCfJV_fX325-Di7Xn1YXiyuZ5oKTmaCMlYqTgpRUaw44BIx0KjKRR4_ohkvBRhgArBQZV4Jmilc8hy0NorkmJ4lL_e6be2DPDgUJMVZkQuSFVkklntCe9jKtrMNdDvpwcrfAd-tJXS9VbWRQmNVUo4Jq6qMlVjESogwoApzBGasdn6oNpTRMGVcHw2biE5vnN3Itb-VGHPOUUaiwpuDQudvBhN62digTF2DM37Y_3hBRexbRF_9g97_vAO1hviCsZWxsBpF5aIgGAlUZCM1v4eKS5vYrThPlY3xScLbSUJkenPXr2EIQS4_f_p_dvVtyr4-YjcG6n4TfD2MwxOm4Itjq_96_GeQ6S_Vl_Pk</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Viet Cuong, Dinh</creator><creator>Lalić, Branislava</creator><creator>Petrić, Mina</creator><creator>Thanh Binh, Nguyen</creator><creator>Roantree, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-7841-4809</orcidid><orcidid>https://orcid.org/0000-0002-1329-2570</orcidid></search><sort><creationdate>20241223</creationdate><title>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</title><author>Viet Cuong, Dinh ; Lalić, Branislava ; Petrić, Mina ; Thanh Binh, Nguyen ; Roantree, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3962-9355bc6289f31c6a1b05ad0f7977972d56b9aea59a19cb7f934c1b67addec2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Accuracy</topic><topic>Analysis</topic><topic>Animals</topic><topic>Aquatic insects</topic><topic>Arboviruses</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Culicidae - physiology</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Differential equations</topic><topic>Disease</topic><topic>Distribution</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Ecological studies</topic><topic>Inverse problems</topic><topic>Language processing</topic><topic>Laws, regulations and rules</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Population biology</topic><topic>Population Dynamics</topic><topic>Population studies</topic><topic>Social Sciences</topic><topic>System effectiveness</topic><topic>System theory</topic><topic>Time domain analysis</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Viet Cuong, Dinh</creatorcontrib><creatorcontrib>Lalić, Branislava</creatorcontrib><creatorcontrib>Petrić, Mina</creatorcontrib><creatorcontrib>Thanh Binh, Nguyen</creatorcontrib><creatorcontrib>Roantree, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Viet Cuong, Dinh</au><au>Lalić, Branislava</au><au>Petrić, Mina</au><au>Thanh Binh, Nguyen</au><au>Roantree, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0315762</spage><pages>e0315762-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39715201</pmid><doi>10.1371/journal.pone.0315762</doi><tpages>e0315762</tpages><orcidid>https://orcid.org/0009-0004-7841-4809</orcidid><orcidid>https://orcid.org/0000-0002-1329-2570</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-12, Vol.19 (12), p.e0315762
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3148792484
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Ablation
Accuracy
Analysis
Animals
Aquatic insects
Arboviruses
Biology and Life Sciences
Case studies
Computational linguistics
Computer and Information Sciences
Culicidae - physiology
Decomposition
Deep learning
Diagnosis
Differential equations
Disease
Distribution
Dynamic models
Dynamical systems
Ecological studies
Inverse problems
Language processing
Laws, regulations and rules
Machine learning
Modelling
Mortality
Mosquitoes
Natural language interfaces
Neural networks
Neural Networks, Computer
Ordinary differential equations
Partial differential equations
Physical Sciences
Physics
Population biology
Population Dynamics
Population studies
Social Sciences
System effectiveness
System theory
Time domain analysis
West Nile virus
title Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adapting%20physics-informed%20neural%20networks%20to%20improve%20ODE%20optimization%20in%20mosquito%20population%20dynamics&rft.jtitle=PloS%20one&rft.au=Viet%20Cuong,%20Dinh&rft.date=2024-12-23&rft.volume=19&rft.issue=12&rft.spage=e0315762&rft.pages=e0315762-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0315762&rft_dat=%3Cgale_plos_%3EA821090844%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148792484&rft_id=info:pmid/39715201&rft_galeid=A821090844&rft_doaj_id=oai_doaj_org_article_9d1cb36125ff45b19b67025a3c160ae1&rfr_iscdi=true