Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry
This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-com...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0305639 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0305639 |
container_title | PloS one |
container_volume | 19 |
creator | Dai, Junjie Mao, Xiaoyan Wu, Pengyue Zhou, Huijie Cao, Lei |
description | This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-commerce data and leverages generative AI to revolutionize production and marketing processes. The integration of AI-generated content (AIGC) technology facilitates streamlined design-to-production cycles and rapid adaptation to market changes and consumer feedback. Findings demonstrate that the application of AI and big data significantly enhances market responsiveness and sales performance for straw hat enterprises in cross-border e-commerce. This research contributes a novel framework for employing AI and big data to navigate the complexities of international commerce, providing strategic insights for small and micro enterprises seeking to expand their global market footprint. |
doi_str_mv | 10.1371/journal.pone.0305639 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3147654911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820702477</galeid><doaj_id>oai_doaj_org_article_fb35eb9e976c45f085e739e7f30acda2</doaj_id><sourcerecordid>A820702477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-143f3e7c5a9467880ba0bc7cd88bf942d210558dc8b3cb4f9e616f750a9627af3</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYmPwDRBYQkLwkGLHcZzwVk0DKk2aNP68Wo593bpK4mI7Hdunx12zaUV7QH6Ic-_vnpscnSx7TfCMUE4-rd3oB9nNNm6AGaaYVbR5kh2ThhZ5VWD69MH9KHsRwhpjRuuqep4d0YZjVpT4OLu6hK3rxmjdYG_ssETKuxDy1nkNHkGuXN-DV_AZzZEG2CBtt4DsEB2aL5AcNGrtEmkZZa59ag2pN7it3AkGZJxHcQUoRC-v0ErG1NVjert-mT0zsgvwanqeZD-_nP04_ZafX3xdnM7Pc8VIFXNSUkOBKyabsuJ1jVuJW8WVruvWNGWhC4IZq7WqW6ra0jRQkcpwhmVTFVwaepK93etuOhfE5FkQlJS8YmVDSCIWe0I7uRYbb3vpr4WTVtwWnF8K6aNVHQjTUgZtAw2vVMkMrhlw2gA3FEulZZG0PkzbvPs9Qoiit0FB18kB3DitTX9S84S--wd9_OMmainTfjsYl5xUO1ExrwvMcVHyndbsESodDb1VKR_GpvrBwMeDgcRE-BOXcgxBLL5f_j978euQff-AXYHs4ipM8QqHYLkHb-PmwdwbT7DYxfvODbGLt5jincbeTKaNbQ_6fuguz_Qvn4n0Mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147654911</pqid></control><display><type>article</type><title>Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dai, Junjie ; Mao, Xiaoyan ; Wu, Pengyue ; Zhou, Huijie ; Cao, Lei</creator><contributor>Limongi, Ricardo</contributor><creatorcontrib>Dai, Junjie ; Mao, Xiaoyan ; Wu, Pengyue ; Zhou, Huijie ; Cao, Lei ; Limongi, Ricardo</creatorcontrib><description>This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-commerce data and leverages generative AI to revolutionize production and marketing processes. The integration of AI-generated content (AIGC) technology facilitates streamlined design-to-production cycles and rapid adaptation to market changes and consumer feedback. Findings demonstrate that the application of AI and big data significantly enhances market responsiveness and sales performance for straw hat enterprises in cross-border e-commerce. This research contributes a novel framework for employing AI and big data to navigate the complexities of international commerce, providing strategic insights for small and micro enterprises seeking to expand their global market footprint.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305639</identifier><identifier>PMID: 39705240</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Big Data ; China ; Clothing industry ; Commerce ; Consumer behavior ; Consumers ; Cultural heritage ; Data analysis ; Demand analysis ; E-commerce ; Economic aspects ; Efficiency ; Electronic commerce ; Fuzzy sets ; Generative artificial intelligence ; Global marketing ; Hats ; Humans ; Industry ; International trade ; Inventory ; Language ; Literature reviews ; Machine Learning ; Market strategy ; Marketing ; Marketing - methods ; Natural language processing ; Plant layout ; Popularity ; Product reviews ; Sentiment analysis ; Straw ; Technology ; Trends</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0305639</ispartof><rights>Copyright: © 2024 Dai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Dai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Dai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-143f3e7c5a9467880ba0bc7cd88bf942d210558dc8b3cb4f9e616f750a9627af3</cites><orcidid>0000-0002-5899-5157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0305639&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305639$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39705240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Limongi, Ricardo</contributor><creatorcontrib>Dai, Junjie</creatorcontrib><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Pengyue</creatorcontrib><creatorcontrib>Zhou, Huijie</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><title>Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-commerce data and leverages generative AI to revolutionize production and marketing processes. The integration of AI-generated content (AIGC) technology facilitates streamlined design-to-production cycles and rapid adaptation to market changes and consumer feedback. Findings demonstrate that the application of AI and big data significantly enhances market responsiveness and sales performance for straw hat enterprises in cross-border e-commerce. This research contributes a novel framework for employing AI and big data to navigate the complexities of international commerce, providing strategic insights for small and micro enterprises seeking to expand their global market footprint.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Big Data</subject><subject>China</subject><subject>Clothing industry</subject><subject>Commerce</subject><subject>Consumer behavior</subject><subject>Consumers</subject><subject>Cultural heritage</subject><subject>Data analysis</subject><subject>Demand analysis</subject><subject>E-commerce</subject><subject>Economic aspects</subject><subject>Efficiency</subject><subject>Electronic commerce</subject><subject>Fuzzy sets</subject><subject>Generative artificial intelligence</subject><subject>Global marketing</subject><subject>Hats</subject><subject>Humans</subject><subject>Industry</subject><subject>International trade</subject><subject>Inventory</subject><subject>Language</subject><subject>Literature reviews</subject><subject>Machine Learning</subject><subject>Market strategy</subject><subject>Marketing</subject><subject>Marketing - methods</subject><subject>Natural language processing</subject><subject>Plant layout</subject><subject>Popularity</subject><subject>Product reviews</subject><subject>Sentiment analysis</subject><subject>Straw</subject><subject>Technology</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYmPwDRBYQkLwkGLHcZzwVk0DKk2aNP68Wo593bpK4mI7Hdunx12zaUV7QH6Ic-_vnpscnSx7TfCMUE4-rd3oB9nNNm6AGaaYVbR5kh2ThhZ5VWD69MH9KHsRwhpjRuuqep4d0YZjVpT4OLu6hK3rxmjdYG_ssETKuxDy1nkNHkGuXN-DV_AZzZEG2CBtt4DsEB2aL5AcNGrtEmkZZa59ag2pN7it3AkGZJxHcQUoRC-v0ErG1NVjert-mT0zsgvwanqeZD-_nP04_ZafX3xdnM7Pc8VIFXNSUkOBKyabsuJ1jVuJW8WVruvWNGWhC4IZq7WqW6ra0jRQkcpwhmVTFVwaepK93etuOhfE5FkQlJS8YmVDSCIWe0I7uRYbb3vpr4WTVtwWnF8K6aNVHQjTUgZtAw2vVMkMrhlw2gA3FEulZZG0PkzbvPs9Qoiit0FB18kB3DitTX9S84S--wd9_OMmainTfjsYl5xUO1ExrwvMcVHyndbsESodDb1VKR_GpvrBwMeDgcRE-BOXcgxBLL5f_j978euQff-AXYHs4ipM8QqHYLkHb-PmwdwbT7DYxfvODbGLt5jincbeTKaNbQ_6fuguz_Qvn4n0Mg</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Dai, Junjie</creator><creator>Mao, Xiaoyan</creator><creator>Wu, Pengyue</creator><creator>Zhou, Huijie</creator><creator>Cao, Lei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K6~</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5899-5157</orcidid></search><sort><creationdate>20241220</creationdate><title>Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry</title><author>Dai, Junjie ; Mao, Xiaoyan ; Wu, Pengyue ; Zhou, Huijie ; Cao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-143f3e7c5a9467880ba0bc7cd88bf942d210558dc8b3cb4f9e616f750a9627af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Big Data</topic><topic>China</topic><topic>Clothing industry</topic><topic>Commerce</topic><topic>Consumer behavior</topic><topic>Consumers</topic><topic>Cultural heritage</topic><topic>Data analysis</topic><topic>Demand analysis</topic><topic>E-commerce</topic><topic>Economic aspects</topic><topic>Efficiency</topic><topic>Electronic commerce</topic><topic>Fuzzy sets</topic><topic>Generative artificial intelligence</topic><topic>Global marketing</topic><topic>Hats</topic><topic>Humans</topic><topic>Industry</topic><topic>International trade</topic><topic>Inventory</topic><topic>Language</topic><topic>Literature reviews</topic><topic>Machine Learning</topic><topic>Market strategy</topic><topic>Marketing</topic><topic>Marketing - methods</topic><topic>Natural language processing</topic><topic>Plant layout</topic><topic>Popularity</topic><topic>Product reviews</topic><topic>Sentiment analysis</topic><topic>Straw</topic><topic>Technology</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Junjie</creatorcontrib><creatorcontrib>Mao, Xiaoyan</creatorcontrib><creatorcontrib>Wu, Pengyue</creatorcontrib><creatorcontrib>Zhou, Huijie</creatorcontrib><creatorcontrib>Cao, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Entrepreneurship Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Junjie</au><au>Mao, Xiaoyan</au><au>Wu, Pengyue</au><au>Zhou, Huijie</au><au>Cao, Lei</au><au>Limongi, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-20</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0305639</spage><pages>e0305639-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper investigates the impact of artificial intelligence (AI) and big data analytics on optimizing cross-border e-commerce efficiency for straw hat manufacturers in Zhejiang Province, China. It identifies market and consumer demand trends through machine learning analysis of comprehensive e-commerce data and leverages generative AI to revolutionize production and marketing processes. The integration of AI-generated content (AIGC) technology facilitates streamlined design-to-production cycles and rapid adaptation to market changes and consumer feedback. Findings demonstrate that the application of AI and big data significantly enhances market responsiveness and sales performance for straw hat enterprises in cross-border e-commerce. This research contributes a novel framework for employing AI and big data to navigate the complexities of international commerce, providing strategic insights for small and micro enterprises seeking to expand their global market footprint.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39705240</pmid><doi>10.1371/journal.pone.0305639</doi><tpages>e0305639</tpages><orcidid>https://orcid.org/0000-0002-5899-5157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0305639 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3147654911 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial Intelligence Automation Big Data China Clothing industry Commerce Consumer behavior Consumers Cultural heritage Data analysis Demand analysis E-commerce Economic aspects Efficiency Electronic commerce Fuzzy sets Generative artificial intelligence Global marketing Hats Humans Industry International trade Inventory Language Literature reviews Machine Learning Market strategy Marketing Marketing - methods Natural language processing Plant layout Popularity Product reviews Sentiment analysis Straw Technology Trends |
title | Revolutionizing cross-border e-commerce: A deep dive into AI and big data-driven innovations for the straw hat industry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revolutionizing%20cross-border%20e-commerce:%20A%20deep%20dive%20into%20AI%20and%20big%20data-driven%20innovations%20for%20the%20straw%20hat%20industry&rft.jtitle=PloS%20one&rft.au=Dai,%20Junjie&rft.date=2024-12-20&rft.volume=19&rft.issue=12&rft.spage=e0305639&rft.pages=e0305639-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305639&rft_dat=%3Cgale_plos_%3EA820702477%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147654911&rft_id=info:pmid/39705240&rft_galeid=A820702477&rft_doaj_id=oai_doaj_org_article_fb35eb9e976c45f085e739e7f30acda2&rfr_iscdi=true |