Improving prediction of solar radiation using Cheetah Optimizer and Random Forest
In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for th...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0314391 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0314391 |
container_title | PloS one |
container_volume | 19 |
creator | Al-Shourbaji, Ibrahim Kachare, Pramod H Jabbari, Abdoh Kirner, Raimund Puri, Digambar Mehanawi, Mostafa Alameen, Abdalla |
description | In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction. |
doi_str_mv | 10.1371/journal.pone.0314391 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3147654877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820702479</galeid><doaj_id>oai_doaj_org_article_589111a1782c4f3eb9937c149f93bee8</doaj_id><sourcerecordid>A820702479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-72a957ca84b10c570c68ba8b3a0c51dcd2c51357dc9c589b72997ae3fe0fb153</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLC6IXMyZN0zSXy-DqwMLgungbTtPTmQxtU5NU1F9vutNddmQvJJCPw3POSd68SfKakiVlgn7c29H10C4H2-OSMJozSZ8kp1SybFFkhD19sD9JXni_J4SzsiieJydMCsKzjJ4mX9fd4OxP02_TwWFtdDC2T22TetuCSx3UBm5Do5-Y1Q4xwC7dDMF05g-6FPo6vY6T7dJL69CHl8mzBlqPr-b1LLm5_HSz-rK42nxery6uFprTIixEBpILDWVeUaK5ILooKygrBvFEa11ncWFc1FpqXspKZFIKQNYgaSrK2Vny9lB2aK1XsxheRR1EwfNSiEisD0RtYa8GZzpwv5UFo24D1m0VuGB0iyo2oJQCFWWm84ZhJSUTmuaykaxCLGOt93M3Z3-M8ZWqM15j20KPdpzbylzwIqLn_6CPX26mthD7m76xwYGeiqqLMiOCZLmQkVo-QsVRY2d0_PjGxPhRwoejhMgE_BW2MHqv1t-u_5_dfD9m3z1gdwht2EWHjJM1_DGYH0DtrPcOm3vhKVGTb-_UUJNv1ezbmPZmFm2sOqzvk-6Myv4CUqHl1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147654877</pqid></control><display><type>article</type><title>Improving prediction of solar radiation using Cheetah Optimizer and Random Forest</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Al-Shourbaji, Ibrahim ; Kachare, Pramod H ; Jabbari, Abdoh ; Kirner, Raimund ; Puri, Digambar ; Mehanawi, Mostafa ; Alameen, Abdalla</creator><contributor>Abou Houran, Mohamad</contributor><creatorcontrib>Al-Shourbaji, Ibrahim ; Kachare, Pramod H ; Jabbari, Abdoh ; Kirner, Raimund ; Puri, Digambar ; Mehanawi, Mostafa ; Alameen, Abdalla ; Abou Houran, Mohamad</creatorcontrib><description>In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0314391</identifier><identifier>PMID: 39705221</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Alternative energy sources ; Artificial neural networks ; Datasets ; Decision trees ; Error analysis ; Error reduction ; Evolution & development ; Forecasting - methods ; Forecasts and trends ; Logistic Models ; Machine Learning ; Neural networks ; Neural Networks, Computer ; Optimization algorithms ; Prediction models ; Radiation ; Random Forest ; Regression models ; Renewable energy ; Renewable resources ; Solar Energy ; Solar radiation ; Sunlight ; Support Vector Machine ; Support vector machines</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0314391</ispartof><rights>Copyright: © 2024 Al-Shourbaji et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Al-Shourbaji et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Al-Shourbaji et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-72a957ca84b10c570c68ba8b3a0c51dcd2c51357dc9c589b72997ae3fe0fb153</cites><orcidid>0000-0002-6485-8415 ; 0000-0002-8638-7044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0314391&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314391$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,2914,23846,27903,27904,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39705221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abou Houran, Mohamad</contributor><creatorcontrib>Al-Shourbaji, Ibrahim</creatorcontrib><creatorcontrib>Kachare, Pramod H</creatorcontrib><creatorcontrib>Jabbari, Abdoh</creatorcontrib><creatorcontrib>Kirner, Raimund</creatorcontrib><creatorcontrib>Puri, Digambar</creatorcontrib><creatorcontrib>Mehanawi, Mostafa</creatorcontrib><creatorcontrib>Alameen, Abdalla</creatorcontrib><title>Improving prediction of solar radiation using Cheetah Optimizer and Random Forest</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Error analysis</subject><subject>Error reduction</subject><subject>Evolution & development</subject><subject>Forecasting - methods</subject><subject>Forecasts and trends</subject><subject>Logistic Models</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization algorithms</subject><subject>Prediction models</subject><subject>Radiation</subject><subject>Random Forest</subject><subject>Regression models</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Solar Energy</subject><subject>Solar radiation</subject><subject>Sunlight</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLC6IXMyZN0zSXy-DqwMLgungbTtPTmQxtU5NU1F9vutNddmQvJJCPw3POSd68SfKakiVlgn7c29H10C4H2-OSMJozSZ8kp1SybFFkhD19sD9JXni_J4SzsiieJydMCsKzjJ4mX9fd4OxP02_TwWFtdDC2T22TetuCSx3UBm5Do5-Y1Q4xwC7dDMF05g-6FPo6vY6T7dJL69CHl8mzBlqPr-b1LLm5_HSz-rK42nxery6uFprTIixEBpILDWVeUaK5ILooKygrBvFEa11ncWFc1FpqXspKZFIKQNYgaSrK2Vny9lB2aK1XsxheRR1EwfNSiEisD0RtYa8GZzpwv5UFo24D1m0VuGB0iyo2oJQCFWWm84ZhJSUTmuaykaxCLGOt93M3Z3-M8ZWqM15j20KPdpzbylzwIqLn_6CPX26mthD7m76xwYGeiqqLMiOCZLmQkVo-QsVRY2d0_PjGxPhRwoejhMgE_BW2MHqv1t-u_5_dfD9m3z1gdwht2EWHjJM1_DGYH0DtrPcOm3vhKVGTb-_UUJNv1ezbmPZmFm2sOqzvk-6Myv4CUqHl1g</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Al-Shourbaji, Ibrahim</creator><creator>Kachare, Pramod H</creator><creator>Jabbari, Abdoh</creator><creator>Kirner, Raimund</creator><creator>Puri, Digambar</creator><creator>Mehanawi, Mostafa</creator><creator>Alameen, Abdalla</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6485-8415</orcidid><orcidid>https://orcid.org/0000-0002-8638-7044</orcidid></search><sort><creationdate>20241220</creationdate><title>Improving prediction of solar radiation using Cheetah Optimizer and Random Forest</title><author>Al-Shourbaji, Ibrahim ; Kachare, Pramod H ; Jabbari, Abdoh ; Kirner, Raimund ; Puri, Digambar ; Mehanawi, Mostafa ; Alameen, Abdalla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-72a957ca84b10c570c68ba8b3a0c51dcd2c51357dc9c589b72997ae3fe0fb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Error analysis</topic><topic>Error reduction</topic><topic>Evolution & development</topic><topic>Forecasting - methods</topic><topic>Forecasts and trends</topic><topic>Logistic Models</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization algorithms</topic><topic>Prediction models</topic><topic>Radiation</topic><topic>Random Forest</topic><topic>Regression models</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Solar Energy</topic><topic>Solar radiation</topic><topic>Sunlight</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Shourbaji, Ibrahim</creatorcontrib><creatorcontrib>Kachare, Pramod H</creatorcontrib><creatorcontrib>Jabbari, Abdoh</creatorcontrib><creatorcontrib>Kirner, Raimund</creatorcontrib><creatorcontrib>Puri, Digambar</creatorcontrib><creatorcontrib>Mehanawi, Mostafa</creatorcontrib><creatorcontrib>Alameen, Abdalla</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Shourbaji, Ibrahim</au><au>Kachare, Pramod H</au><au>Jabbari, Abdoh</au><au>Kirner, Raimund</au><au>Puri, Digambar</au><au>Mehanawi, Mostafa</au><au>Alameen, Abdalla</au><au>Abou Houran, Mohamad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving prediction of solar radiation using Cheetah Optimizer and Random Forest</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-20</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0314391</spage><pages>e0314391-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the contemporary context of a burgeoning energy crisis, the accurate and dependable prediction of Solar Radiation (SR) has emerged as an indispensable component within thermal systems to facilitate renewable energy generation. Machine Learning (ML) models have gained widespread recognition for their precision and computational efficiency in addressing SR prediction challenges. Consequently, this paper introduces an innovative SR prediction model, denoted as the Cheetah Optimizer-Random Forest (CO-RF) model. The CO component plays a pivotal role in selecting the most informative features for hourly SR forecasting, subsequently serving as inputs to the RF model. The efficacy of the developed CO-RF model is rigorously assessed using two publicly available SR datasets. Evaluation metrics encompassing Mean Absolute Error (MAE), Mean Squared Error (MSE), and coefficient of determination (R2) are employed to validate its performance. Quantitative analysis demonstrates that the CO-RF model surpasses other techniques, Logistic Regression (LR), Support Vector Machine (SVM), Artificial Neural Network, and standalone Random Forest (RF), both in the training and testing phases of SR prediction. The proposed CO-RF model outperforms others, achieving a low MAE of 0.0365, MSE of 0.0074, and an R2 of 0.9251 on the first dataset, and an MAE of 0.0469, MSE of 0.0032, and R2 of 0.9868 on the second dataset, demonstrating significant error reduction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39705221</pmid><doi>10.1371/journal.pone.0314391</doi><tpages>e0314391</tpages><orcidid>https://orcid.org/0000-0002-6485-8415</orcidid><orcidid>https://orcid.org/0000-0002-8638-7044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0314391 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3147654877 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Alternative energy sources Artificial neural networks Datasets Decision trees Error analysis Error reduction Evolution & development Forecasting - methods Forecasts and trends Logistic Models Machine Learning Neural networks Neural Networks, Computer Optimization algorithms Prediction models Radiation Random Forest Regression models Renewable energy Renewable resources Solar Energy Solar radiation Sunlight Support Vector Machine Support vector machines |
title | Improving prediction of solar radiation using Cheetah Optimizer and Random Forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20prediction%20of%20solar%20radiation%20using%20Cheetah%20Optimizer%20and%20Random%20Forest&rft.jtitle=PloS%20one&rft.au=Al-Shourbaji,%20Ibrahim&rft.date=2024-12-20&rft.volume=19&rft.issue=12&rft.spage=e0314391&rft.pages=e0314391-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0314391&rft_dat=%3Cgale_plos_%3EA820702479%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147654877&rft_id=info:pmid/39705221&rft_galeid=A820702479&rft_doaj_id=oai_doaj_org_article_589111a1782c4f3eb9937c149f93bee8&rfr_iscdi=true |