An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model
Biometric stress monitoring has become a critical area of research in understanding and managing health problems resulting from stress. One of the fields that emerged in this area is biometric stress monitoring, which provides continuous or real-time information about different anxiety levels among...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0310776 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0310776 |
container_title | PloS one |
container_volume | 19 |
creator | M Khayyat, Mashael Munshi, Raafat M Alabduallah, Bayan Lamoudan, Tarik Ghith, Ehab Kim, Tai-Hoon A Abdelhamid, Abdelaziz |
description | Biometric stress monitoring has become a critical area of research in understanding and managing health problems resulting from stress. One of the fields that emerged in this area is biometric stress monitoring, which provides continuous or real-time information about different anxiety levels among people by analyzing physiological signals and behavioral data. In this paper, we propose a new approach based on the CapsNets model for continuously monitoring psychophysiological stress. In the new model, streams of biometric data, including physiological signals and behavioral patterns, are taken up for analysis. In testing using the Swell multiclass dataset, it performed with an accuracy of 92.76%. Further testing of the WESAD dataset reveals an even better accuracy at 96.76%. The accuracy obtained for binary classification of stress and no stress class is applied to the Swell dataset, where this model obtained an outstanding accuracy of 98.52% in this study and on WESAD, 99.82%. Comparative analysis with other state-of-the-art models underlines the superior performance; it achieves better results than all of its competitors. The developed model is then rigorously subjected to 5-fold cross-validation, which proved very significant and proved that the proposed model could be effective and efficient in biometric stress monitoring. |
doi_str_mv | 10.1371/journal.pone.0310776 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3146387322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820218688</galeid><sourcerecordid>A820218688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4216-7e4c67c2c467d226361875b59c9dadd8fe4fdd4e10beb7636f2645e1b0971a113</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYpeFf4DAEhKCQ4s_Eic5oariY6UVK_F1tZx40npx7GI7hV755ThqumrRHpAPtsfPvDMav1n2lOA5YSV5c-MGb6WZb5yFOWYElyW_l52TmtEZp5jdPzqfZY9CuMG4YBXnD7MzVvOqxhU5z_4sLNL9xrstKNRo10P0ukUheggB9c7q6Ly2KxScGaJ2FnXOo1_O_xiD0G-M2wEENITxvgbpI_IyAtpKr2WjjY47pGSUSFqFlnITBgPoE8RRIukrMI-zB500AZ5M-0X27f27r8uPs6vrD5fLxdWszSnhsxLylpctbXNeKko546Qqi6ao21pJpaoO8k6pHAhuoCnTc0d5XgBpcF0SSQi7yJ7vdVPPQUzjC4KRnLOqZJQm4u1EDE0PqgUbvTRi43Uv_U44qcXpi9VrsXJbQQgvSMFHhVeTgnc_BwhR9Dq0YIy04IZ9sTpntC4S-uIf9O6WJmolDQhtO5cKt6OoWFQUU1LxqkrU_A4qLQW9bpNBOp3iJwmvTxISE-F3XMkhBHH55fP_s9ffT9mXR2yyg4nrg3PCKZjvwda7EDx0t1MmWIz-PkxDjP4Wk79T2rPjH7pNOhia_QUx6_gH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146387322</pqid></control><display><type>article</type><title>An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>M Khayyat, Mashael ; Munshi, Raafat M ; Alabduallah, Bayan ; Lamoudan, Tarik ; Ghith, Ehab ; Kim, Tai-Hoon ; A Abdelhamid, Abdelaziz</creator><contributor>Neelakandan, Subramani</contributor><creatorcontrib>M Khayyat, Mashael ; Munshi, Raafat M ; Alabduallah, Bayan ; Lamoudan, Tarik ; Ghith, Ehab ; Kim, Tai-Hoon ; A Abdelhamid, Abdelaziz ; Neelakandan, Subramani</creatorcontrib><description>Biometric stress monitoring has become a critical area of research in understanding and managing health problems resulting from stress. One of the fields that emerged in this area is biometric stress monitoring, which provides continuous or real-time information about different anxiety levels among people by analyzing physiological signals and behavioral data. In this paper, we propose a new approach based on the CapsNets model for continuously monitoring psychophysiological stress. In the new model, streams of biometric data, including physiological signals and behavioral patterns, are taken up for analysis. In testing using the Swell multiclass dataset, it performed with an accuracy of 92.76%. Further testing of the WESAD dataset reveals an even better accuracy at 96.76%. The accuracy obtained for binary classification of stress and no stress class is applied to the Swell dataset, where this model obtained an outstanding accuracy of 98.52% in this study and on WESAD, 99.82%. Comparative analysis with other state-of-the-art models underlines the superior performance; it achieves better results than all of its competitors. The developed model is then rigorously subjected to 5-fold cross-validation, which proved very significant and proved that the proposed model could be effective and efficient in biometric stress monitoring.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310776</identifier><identifier>PMID: 39689081</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adult ; Algorithms ; Anxiety ; Biology and Life Sciences ; Biometrics ; Biometry - methods ; Comparative analysis ; Computational linguistics ; Computer and Information Sciences ; Data analysis ; Datasets ; Electrocardiography ; Employees ; Health problems ; Heart beat ; Heart rate ; Heart Rate - physiology ; Hormones ; Humans ; Hypothalamus ; Language processing ; Machine learning ; Male ; Medicine and Health Sciences ; Mental depression ; Mental disorders ; Mental health ; Monitoring, Physiologic - methods ; Natural language interfaces ; Nervous system ; Neural networks ; Occupational stress ; Physiology ; Real time ; Research and Analysis Methods ; Social Sciences ; Stress ; Stress, Psychological - physiopathology ; Students</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0310776</ispartof><rights>Copyright: © 2024 M. Khayyat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 M. Khayyat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 M. Khayyat et al 2024 M. Khayyat et al</rights><rights>2024 M. Khayyat et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4216-7e4c67c2c467d226361875b59c9dadd8fe4fdd4e10beb7636f2645e1b0971a113</cites><orcidid>0000-0003-3770-432X ; 0000-0002-4338-9867 ; 0000-0001-7696-0452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651562/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651562/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2917,23853,27911,27912,53778,53780,79355,79356</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39689081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neelakandan, Subramani</contributor><creatorcontrib>M Khayyat, Mashael</creatorcontrib><creatorcontrib>Munshi, Raafat M</creatorcontrib><creatorcontrib>Alabduallah, Bayan</creatorcontrib><creatorcontrib>Lamoudan, Tarik</creatorcontrib><creatorcontrib>Ghith, Ehab</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><creatorcontrib>A Abdelhamid, Abdelaziz</creatorcontrib><title>An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biometric stress monitoring has become a critical area of research in understanding and managing health problems resulting from stress. One of the fields that emerged in this area is biometric stress monitoring, which provides continuous or real-time information about different anxiety levels among people by analyzing physiological signals and behavioral data. In this paper, we propose a new approach based on the CapsNets model for continuously monitoring psychophysiological stress. In the new model, streams of biometric data, including physiological signals and behavioral patterns, are taken up for analysis. In testing using the Swell multiclass dataset, it performed with an accuracy of 92.76%. Further testing of the WESAD dataset reveals an even better accuracy at 96.76%. The accuracy obtained for binary classification of stress and no stress class is applied to the Swell dataset, where this model obtained an outstanding accuracy of 98.52% in this study and on WESAD, 99.82%. Comparative analysis with other state-of-the-art models underlines the superior performance; it achieves better results than all of its competitors. The developed model is then rigorously subjected to 5-fold cross-validation, which proved very significant and proved that the proposed model could be effective and efficient in biometric stress monitoring.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Anxiety</subject><subject>Biology and Life Sciences</subject><subject>Biometrics</subject><subject>Biometry - methods</subject><subject>Comparative analysis</subject><subject>Computational linguistics</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Electrocardiography</subject><subject>Employees</subject><subject>Health problems</subject><subject>Heart beat</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Hormones</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Monitoring, Physiologic - methods</subject><subject>Natural language interfaces</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Occupational stress</subject><subject>Physiology</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Stress</subject><subject>Stress, Psychological - physiopathology</subject><subject>Students</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk2P0zAQhiMEYpeFf4DAEhKCQ4s_Eic5oariY6UVK_F1tZx40npx7GI7hV755ThqumrRHpAPtsfPvDMav1n2lOA5YSV5c-MGb6WZb5yFOWYElyW_l52TmtEZp5jdPzqfZY9CuMG4YBXnD7MzVvOqxhU5z_4sLNL9xrstKNRo10P0ukUheggB9c7q6Ly2KxScGaJ2FnXOo1_O_xiD0G-M2wEENITxvgbpI_IyAtpKr2WjjY47pGSUSFqFlnITBgPoE8RRIukrMI-zB500AZ5M-0X27f27r8uPs6vrD5fLxdWszSnhsxLylpctbXNeKko546Qqi6ao21pJpaoO8k6pHAhuoCnTc0d5XgBpcF0SSQi7yJ7vdVPPQUzjC4KRnLOqZJQm4u1EDE0PqgUbvTRi43Uv_U44qcXpi9VrsXJbQQgvSMFHhVeTgnc_BwhR9Dq0YIy04IZ9sTpntC4S-uIf9O6WJmolDQhtO5cKt6OoWFQUU1LxqkrU_A4qLQW9bpNBOp3iJwmvTxISE-F3XMkhBHH55fP_s9ffT9mXR2yyg4nrg3PCKZjvwda7EDx0t1MmWIz-PkxDjP4Wk79T2rPjH7pNOhia_QUx6_gH</recordid><startdate>20241217</startdate><enddate>20241217</enddate><creator>M Khayyat, Mashael</creator><creator>Munshi, Raafat M</creator><creator>Alabduallah, Bayan</creator><creator>Lamoudan, Tarik</creator><creator>Ghith, Ehab</creator><creator>Kim, Tai-Hoon</creator><creator>A Abdelhamid, Abdelaziz</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3770-432X</orcidid><orcidid>https://orcid.org/0000-0002-4338-9867</orcidid><orcidid>https://orcid.org/0000-0001-7696-0452</orcidid></search><sort><creationdate>20241217</creationdate><title>An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model</title><author>M Khayyat, Mashael ; Munshi, Raafat M ; Alabduallah, Bayan ; Lamoudan, Tarik ; Ghith, Ehab ; Kim, Tai-Hoon ; A Abdelhamid, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4216-7e4c67c2c467d226361875b59c9dadd8fe4fdd4e10beb7636f2645e1b0971a113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Anxiety</topic><topic>Biology and Life Sciences</topic><topic>Biometrics</topic><topic>Biometry - methods</topic><topic>Comparative analysis</topic><topic>Computational linguistics</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Electrocardiography</topic><topic>Employees</topic><topic>Health problems</topic><topic>Heart beat</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Hormones</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Monitoring, Physiologic - methods</topic><topic>Natural language interfaces</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Occupational stress</topic><topic>Physiology</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Stress</topic><topic>Stress, Psychological - physiopathology</topic><topic>Students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M Khayyat, Mashael</creatorcontrib><creatorcontrib>Munshi, Raafat M</creatorcontrib><creatorcontrib>Alabduallah, Bayan</creatorcontrib><creatorcontrib>Lamoudan, Tarik</creatorcontrib><creatorcontrib>Ghith, Ehab</creatorcontrib><creatorcontrib>Kim, Tai-Hoon</creatorcontrib><creatorcontrib>A Abdelhamid, Abdelaziz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M Khayyat, Mashael</au><au>Munshi, Raafat M</au><au>Alabduallah, Bayan</au><au>Lamoudan, Tarik</au><au>Ghith, Ehab</au><au>Kim, Tai-Hoon</au><au>A Abdelhamid, Abdelaziz</au><au>Neelakandan, Subramani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-17</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0310776</spage><pages>e0310776-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biometric stress monitoring has become a critical area of research in understanding and managing health problems resulting from stress. One of the fields that emerged in this area is biometric stress monitoring, which provides continuous or real-time information about different anxiety levels among people by analyzing physiological signals and behavioral data. In this paper, we propose a new approach based on the CapsNets model for continuously monitoring psychophysiological stress. In the new model, streams of biometric data, including physiological signals and behavioral patterns, are taken up for analysis. In testing using the Swell multiclass dataset, it performed with an accuracy of 92.76%. Further testing of the WESAD dataset reveals an even better accuracy at 96.76%. The accuracy obtained for binary classification of stress and no stress class is applied to the Swell dataset, where this model obtained an outstanding accuracy of 98.52% in this study and on WESAD, 99.82%. Comparative analysis with other state-of-the-art models underlines the superior performance; it achieves better results than all of its competitors. The developed model is then rigorously subjected to 5-fold cross-validation, which proved very significant and proved that the proposed model could be effective and efficient in biometric stress monitoring.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39689081</pmid><doi>10.1371/journal.pone.0310776</doi><tpages>e0310776</tpages><orcidid>https://orcid.org/0000-0003-3770-432X</orcidid><orcidid>https://orcid.org/0000-0002-4338-9867</orcidid><orcidid>https://orcid.org/0000-0001-7696-0452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0310776 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3146387322 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Adult Algorithms Anxiety Biology and Life Sciences Biometrics Biometry - methods Comparative analysis Computational linguistics Computer and Information Sciences Data analysis Datasets Electrocardiography Employees Health problems Heart beat Heart rate Heart Rate - physiology Hormones Humans Hypothalamus Language processing Machine learning Male Medicine and Health Sciences Mental depression Mental disorders Mental health Monitoring, Physiologic - methods Natural language interfaces Nervous system Neural networks Occupational stress Physiology Real time Research and Analysis Methods Social Sciences Stress Stress, Psychological - physiopathology Students |
title | An improved biometric stress monitoring solution for working employees using heart rate variability data and Capsule Network model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A36%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20biometric%20stress%20monitoring%20solution%20for%20working%20employees%20using%20heart%20rate%20variability%20data%20and%20Capsule%20Network%20model&rft.jtitle=PloS%20one&rft.au=M%20Khayyat,%20Mashael&rft.date=2024-12-17&rft.volume=19&rft.issue=12&rft.spage=e0310776&rft.pages=e0310776-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310776&rft_dat=%3Cgale_plos_%3EA820218688%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146387322&rft_id=info:pmid/39689081&rft_galeid=A820218688&rfr_iscdi=true |