Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola

While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (cano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-12, Vol.19 (12), p.e0306865
Hauptverfasser: Pyone, Win Win, Bell, Richard W, Rose, Michael T, McGrath, Gavan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e0306865
container_title PloS one
container_volume 19
creator Pyone, Win Win
Bell, Richard W
Rose, Michael T
McGrath, Gavan
description While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.
doi_str_mv 10.1371/journal.pone.0306865
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3141787503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819144905</galeid><doaj_id>oai_doaj_org_article_3040fee65cdb4bdeaa67f5913204e899</doaj_id><sourcerecordid>A819144905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQRS6azL5mlyWUnWhUPEL78KZTLKb7exkm2Sw---b7U5LV3ohuUg4ec5H3rxF8RqjKSYCf1r6IfTQTde-N1NEEK85e1IcYkmqCa8QefrgfFC8iHGJECM158-LAyI5rbDgh8Wfb4tN8slfO-3SpgwuXpYQo4lxZfpUelu2bgi-L4OJrh1MLF1fRujbWObg34WBdFzqhdOXawPHZb4oNfS-g5fFMwtdNK_G_aj49fns5-nXyfnFl9npyflEM8zTRJC6qltRWWYa0BRsI6UQVEpe24ZBjaXADaIGcwZcCyst5pUWpNWYGEQZOSre7uquOx_VKEpUBFMsasEQycRsR7Qelmod3ArCRnlw6jbgw1xBSE53RhFEkTWGM902tGkNABeWSUyqPEItZa71YewW_FVWI6mVi9p0HfTGD7dtOaNcCprRd_-gjw83UnPI_V1vfQqgt0XVSX48plSi7SOnj1B5tWbldDaAdTm-l_BxLyEzyVynOQwxqtmP7__PXvzeZ98_YPPvd2kRfTck5_u4D9IdqIOPMRh7LzxGauvfOzXU1r9q9G9OezOKNjQr094n3RmW3AA98Oih</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141787503</pqid></control><display><type>article</type><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</creator><creatorcontrib>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</creatorcontrib><description>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0306865</identifier><identifier>PMID: 39642176</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural land ; Agricultural practices ; Bioassays ; Bioavailability ; Biomass ; Brassica napus - drug effects ; Brassica napus - growth &amp; development ; Canola ; Cation exchange ; Cation exchanging ; Chickpea ; Chickpeas ; Cicer - drug effects ; Cicer - growth &amp; development ; Crop fields ; Crop rotation ; Crops ; Crops, Agricultural - drug effects ; Crops, Agricultural - growth &amp; development ; Diuron ; Diuron - analysis ; Diuron - toxicity ; Environmental aspects ; Evaluation ; Experiments ; Flowers &amp; plants ; Grain crops ; Health aspects ; Herbicides ; Herbicides - analysis ; Herbicides - toxicity ; Organic matter ; Organic soils ; Pesticide pollution ; Pesticide Residues - analysis ; Pesticide Residues - toxicity ; Phytotoxicity ; Plant growth ; Production management ; Regression models ; Residues ; Risk Assessment ; Sand ; Silicon Dioxide ; Soil - chemistry ; Soil organic matter ; Soil Pollutants - analysis ; Soil Pollutants - toxicity ; Soil properties ; Soils ; Target detection ; Thresholds ; Toxicity ; Triticum - drug effects ; Triticum - growth &amp; development ; Weight reduction ; Wheat</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0306865</ispartof><rights>Copyright: © 2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</cites><orcidid>0000-0001-8718-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306865&amp;type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306865$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyone, Win Win</creatorcontrib><creatorcontrib>Bell, Richard W</creatorcontrib><creatorcontrib>Rose, Michael T</creatorcontrib><creatorcontrib>McGrath, Gavan</creatorcontrib><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</description><subject>Agricultural land</subject><subject>Agricultural practices</subject><subject>Bioassays</subject><subject>Bioavailability</subject><subject>Biomass</subject><subject>Brassica napus - drug effects</subject><subject>Brassica napus - growth &amp; development</subject><subject>Canola</subject><subject>Cation exchange</subject><subject>Cation exchanging</subject><subject>Chickpea</subject><subject>Chickpeas</subject><subject>Cicer - drug effects</subject><subject>Cicer - growth &amp; development</subject><subject>Crop fields</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Crops, Agricultural - drug effects</subject><subject>Crops, Agricultural - growth &amp; development</subject><subject>Diuron</subject><subject>Diuron - analysis</subject><subject>Diuron - toxicity</subject><subject>Environmental aspects</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Flowers &amp; plants</subject><subject>Grain crops</subject><subject>Health aspects</subject><subject>Herbicides</subject><subject>Herbicides - analysis</subject><subject>Herbicides - toxicity</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Pesticide pollution</subject><subject>Pesticide Residues - analysis</subject><subject>Pesticide Residues - toxicity</subject><subject>Phytotoxicity</subject><subject>Plant growth</subject><subject>Production management</subject><subject>Regression models</subject><subject>Residues</subject><subject>Risk Assessment</subject><subject>Sand</subject><subject>Silicon Dioxide</subject><subject>Soil - chemistry</subject><subject>Soil organic matter</subject><subject>Soil Pollutants - analysis</subject><subject>Soil Pollutants - toxicity</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Target detection</subject><subject>Thresholds</subject><subject>Toxicity</subject><subject>Triticum - drug effects</subject><subject>Triticum - growth &amp; development</subject><subject>Weight reduction</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQRS6azL5mlyWUnWhUPEL78KZTLKb7exkm2Sw---b7U5LV3ohuUg4ec5H3rxF8RqjKSYCf1r6IfTQTde-N1NEEK85e1IcYkmqCa8QefrgfFC8iHGJECM158-LAyI5rbDgh8Wfb4tN8slfO-3SpgwuXpYQo4lxZfpUelu2bgi-L4OJrh1MLF1fRujbWObg34WBdFzqhdOXawPHZb4oNfS-g5fFMwtdNK_G_aj49fns5-nXyfnFl9npyflEM8zTRJC6qltRWWYa0BRsI6UQVEpe24ZBjaXADaIGcwZcCyst5pUWpNWYGEQZOSre7uquOx_VKEpUBFMsasEQycRsR7Qelmod3ArCRnlw6jbgw1xBSE53RhFEkTWGM902tGkNABeWSUyqPEItZa71YewW_FVWI6mVi9p0HfTGD7dtOaNcCprRd_-gjw83UnPI_V1vfQqgt0XVSX48plSi7SOnj1B5tWbldDaAdTm-l_BxLyEzyVynOQwxqtmP7__PXvzeZ98_YPPvd2kRfTck5_u4D9IdqIOPMRh7LzxGauvfOzXU1r9q9G9OezOKNjQr094n3RmW3AA98Oih</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Pyone, Win Win</creator><creator>Bell, Richard W</creator><creator>Rose, Michael T</creator><creator>McGrath, Gavan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8718-4591</orcidid></search><sort><creationdate>20241206</creationdate><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><author>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Agricultural practices</topic><topic>Bioassays</topic><topic>Bioavailability</topic><topic>Biomass</topic><topic>Brassica napus - drug effects</topic><topic>Brassica napus - growth &amp; development</topic><topic>Canola</topic><topic>Cation exchange</topic><topic>Cation exchanging</topic><topic>Chickpea</topic><topic>Chickpeas</topic><topic>Cicer - drug effects</topic><topic>Cicer - growth &amp; development</topic><topic>Crop fields</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Crops, Agricultural - drug effects</topic><topic>Crops, Agricultural - growth &amp; development</topic><topic>Diuron</topic><topic>Diuron - analysis</topic><topic>Diuron - toxicity</topic><topic>Environmental aspects</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Flowers &amp; plants</topic><topic>Grain crops</topic><topic>Health aspects</topic><topic>Herbicides</topic><topic>Herbicides - analysis</topic><topic>Herbicides - toxicity</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Pesticide pollution</topic><topic>Pesticide Residues - analysis</topic><topic>Pesticide Residues - toxicity</topic><topic>Phytotoxicity</topic><topic>Plant growth</topic><topic>Production management</topic><topic>Regression models</topic><topic>Residues</topic><topic>Risk Assessment</topic><topic>Sand</topic><topic>Silicon Dioxide</topic><topic>Soil - chemistry</topic><topic>Soil organic matter</topic><topic>Soil Pollutants - analysis</topic><topic>Soil Pollutants - toxicity</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Target detection</topic><topic>Thresholds</topic><topic>Toxicity</topic><topic>Triticum - drug effects</topic><topic>Triticum - growth &amp; development</topic><topic>Weight reduction</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyone, Win Win</creatorcontrib><creatorcontrib>Bell, Richard W</creatorcontrib><creatorcontrib>Rose, Michael T</creatorcontrib><creatorcontrib>McGrath, Gavan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pyone, Win Win</au><au>Bell, Richard W</au><au>Rose, Michael T</au><au>McGrath, Gavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0306865</spage><pages>e0306865-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39642176</pmid><doi>10.1371/journal.pone.0306865</doi><tpages>e0306865</tpages><orcidid>https://orcid.org/0000-0001-8718-4591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-12, Vol.19 (12), p.e0306865
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3141787503
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agricultural land
Agricultural practices
Bioassays
Bioavailability
Biomass
Brassica napus - drug effects
Brassica napus - growth & development
Canola
Cation exchange
Cation exchanging
Chickpea
Chickpeas
Cicer - drug effects
Cicer - growth & development
Crop fields
Crop rotation
Crops
Crops, Agricultural - drug effects
Crops, Agricultural - growth & development
Diuron
Diuron - analysis
Diuron - toxicity
Environmental aspects
Evaluation
Experiments
Flowers & plants
Grain crops
Health aspects
Herbicides
Herbicides - analysis
Herbicides - toxicity
Organic matter
Organic soils
Pesticide pollution
Pesticide Residues - analysis
Pesticide Residues - toxicity
Phytotoxicity
Plant growth
Production management
Regression models
Residues
Risk Assessment
Sand
Silicon Dioxide
Soil - chemistry
Soil organic matter
Soil Pollutants - analysis
Soil Pollutants - toxicity
Soil properties
Soils
Target detection
Thresholds
Toxicity
Triticum - drug effects
Triticum - growth & development
Weight reduction
Wheat
title Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytotoxicity%20risk%20assessment%20of%20diuron%20residues%20in%20sands%20on%20wheat,%20chickpea,%20and%20canola&rft.jtitle=PloS%20one&rft.au=Pyone,%20Win%20Win&rft.date=2024-12-06&rft.volume=19&rft.issue=12&rft.spage=e0306865&rft.pages=e0306865-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0306865&rft_dat=%3Cgale_plos_%3EA819144905%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141787503&rft_id=info:pmid/39642176&rft_galeid=A819144905&rft_doaj_id=oai_doaj_org_article_3040fee65cdb4bdeaa67f5913204e899&rfr_iscdi=true