Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola
While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (cano...
Gespeichert in:
Veröffentlicht in: | PloS one 2024-12, Vol.19 (12), p.e0306865 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e0306865 |
container_title | PloS one |
container_volume | 19 |
creator | Pyone, Win Win Bell, Richard W Rose, Michael T McGrath, Gavan |
description | While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops. |
doi_str_mv | 10.1371/journal.pone.0306865 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3141787503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819144905</galeid><doaj_id>oai_doaj_org_article_3040fee65cdb4bdeaa67f5913204e899</doaj_id><sourcerecordid>A819144905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQRS6azL5mlyWUnWhUPEL78KZTLKb7exkm2Sw---b7U5LV3ohuUg4ec5H3rxF8RqjKSYCf1r6IfTQTde-N1NEEK85e1IcYkmqCa8QefrgfFC8iHGJECM158-LAyI5rbDgh8Wfb4tN8slfO-3SpgwuXpYQo4lxZfpUelu2bgi-L4OJrh1MLF1fRujbWObg34WBdFzqhdOXawPHZb4oNfS-g5fFMwtdNK_G_aj49fns5-nXyfnFl9npyflEM8zTRJC6qltRWWYa0BRsI6UQVEpe24ZBjaXADaIGcwZcCyst5pUWpNWYGEQZOSre7uquOx_VKEpUBFMsasEQycRsR7Qelmod3ArCRnlw6jbgw1xBSE53RhFEkTWGM902tGkNABeWSUyqPEItZa71YewW_FVWI6mVi9p0HfTGD7dtOaNcCprRd_-gjw83UnPI_V1vfQqgt0XVSX48plSi7SOnj1B5tWbldDaAdTm-l_BxLyEzyVynOQwxqtmP7__PXvzeZ98_YPPvd2kRfTck5_u4D9IdqIOPMRh7LzxGauvfOzXU1r9q9G9OezOKNjQr094n3RmW3AA98Oih</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141787503</pqid></control><display><type>article</type><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</creator><creatorcontrib>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</creatorcontrib><description>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0306865</identifier><identifier>PMID: 39642176</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural land ; Agricultural practices ; Bioassays ; Bioavailability ; Biomass ; Brassica napus - drug effects ; Brassica napus - growth & development ; Canola ; Cation exchange ; Cation exchanging ; Chickpea ; Chickpeas ; Cicer - drug effects ; Cicer - growth & development ; Crop fields ; Crop rotation ; Crops ; Crops, Agricultural - drug effects ; Crops, Agricultural - growth & development ; Diuron ; Diuron - analysis ; Diuron - toxicity ; Environmental aspects ; Evaluation ; Experiments ; Flowers & plants ; Grain crops ; Health aspects ; Herbicides ; Herbicides - analysis ; Herbicides - toxicity ; Organic matter ; Organic soils ; Pesticide pollution ; Pesticide Residues - analysis ; Pesticide Residues - toxicity ; Phytotoxicity ; Plant growth ; Production management ; Regression models ; Residues ; Risk Assessment ; Sand ; Silicon Dioxide ; Soil - chemistry ; Soil organic matter ; Soil Pollutants - analysis ; Soil Pollutants - toxicity ; Soil properties ; Soils ; Target detection ; Thresholds ; Toxicity ; Triticum - drug effects ; Triticum - growth & development ; Weight reduction ; Wheat</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0306865</ispartof><rights>Copyright: © 2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Pyone et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</cites><orcidid>0000-0001-8718-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306865&type=printable$$EPDF$$P50$$Gplos$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306865$$EHTML$$P50$$Gplos$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,2915,23845,27901,27902,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pyone, Win Win</creatorcontrib><creatorcontrib>Bell, Richard W</creatorcontrib><creatorcontrib>Rose, Michael T</creatorcontrib><creatorcontrib>McGrath, Gavan</creatorcontrib><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</description><subject>Agricultural land</subject><subject>Agricultural practices</subject><subject>Bioassays</subject><subject>Bioavailability</subject><subject>Biomass</subject><subject>Brassica napus - drug effects</subject><subject>Brassica napus - growth & development</subject><subject>Canola</subject><subject>Cation exchange</subject><subject>Cation exchanging</subject><subject>Chickpea</subject><subject>Chickpeas</subject><subject>Cicer - drug effects</subject><subject>Cicer - growth & development</subject><subject>Crop fields</subject><subject>Crop rotation</subject><subject>Crops</subject><subject>Crops, Agricultural - drug effects</subject><subject>Crops, Agricultural - growth & development</subject><subject>Diuron</subject><subject>Diuron - analysis</subject><subject>Diuron - toxicity</subject><subject>Environmental aspects</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Flowers & plants</subject><subject>Grain crops</subject><subject>Health aspects</subject><subject>Herbicides</subject><subject>Herbicides - analysis</subject><subject>Herbicides - toxicity</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Pesticide pollution</subject><subject>Pesticide Residues - analysis</subject><subject>Pesticide Residues - toxicity</subject><subject>Phytotoxicity</subject><subject>Plant growth</subject><subject>Production management</subject><subject>Regression models</subject><subject>Residues</subject><subject>Risk Assessment</subject><subject>Sand</subject><subject>Silicon Dioxide</subject><subject>Soil - chemistry</subject><subject>Soil organic matter</subject><subject>Soil Pollutants - analysis</subject><subject>Soil Pollutants - toxicity</subject><subject>Soil properties</subject><subject>Soils</subject><subject>Target detection</subject><subject>Thresholds</subject><subject>Toxicity</subject><subject>Triticum - drug effects</subject><subject>Triticum - growth & development</subject><subject>Weight reduction</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQRS6azL5mlyWUnWhUPEL78KZTLKb7exkm2Sw---b7U5LV3ohuUg4ec5H3rxF8RqjKSYCf1r6IfTQTde-N1NEEK85e1IcYkmqCa8QefrgfFC8iHGJECM158-LAyI5rbDgh8Wfb4tN8slfO-3SpgwuXpYQo4lxZfpUelu2bgi-L4OJrh1MLF1fRujbWObg34WBdFzqhdOXawPHZb4oNfS-g5fFMwtdNK_G_aj49fns5-nXyfnFl9npyflEM8zTRJC6qltRWWYa0BRsI6UQVEpe24ZBjaXADaIGcwZcCyst5pUWpNWYGEQZOSre7uquOx_VKEpUBFMsasEQycRsR7Qelmod3ArCRnlw6jbgw1xBSE53RhFEkTWGM902tGkNABeWSUyqPEItZa71YewW_FVWI6mVi9p0HfTGD7dtOaNcCprRd_-gjw83UnPI_V1vfQqgt0XVSX48plSi7SOnj1B5tWbldDaAdTm-l_BxLyEzyVynOQwxqtmP7__PXvzeZ98_YPPvd2kRfTck5_u4D9IdqIOPMRh7LzxGauvfOzXU1r9q9G9OezOKNjQr094n3RmW3AA98Oih</recordid><startdate>20241206</startdate><enddate>20241206</enddate><creator>Pyone, Win Win</creator><creator>Bell, Richard W</creator><creator>Rose, Michael T</creator><creator>McGrath, Gavan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8718-4591</orcidid></search><sort><creationdate>20241206</creationdate><title>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</title><author>Pyone, Win Win ; Bell, Richard W ; Rose, Michael T ; McGrath, Gavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-73828d72f5ebac4afb997749968fb5a81971b04e165a6c7f9f162c73dc13e0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Agricultural practices</topic><topic>Bioassays</topic><topic>Bioavailability</topic><topic>Biomass</topic><topic>Brassica napus - drug effects</topic><topic>Brassica napus - growth & development</topic><topic>Canola</topic><topic>Cation exchange</topic><topic>Cation exchanging</topic><topic>Chickpea</topic><topic>Chickpeas</topic><topic>Cicer - drug effects</topic><topic>Cicer - growth & development</topic><topic>Crop fields</topic><topic>Crop rotation</topic><topic>Crops</topic><topic>Crops, Agricultural - drug effects</topic><topic>Crops, Agricultural - growth & development</topic><topic>Diuron</topic><topic>Diuron - analysis</topic><topic>Diuron - toxicity</topic><topic>Environmental aspects</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Flowers & plants</topic><topic>Grain crops</topic><topic>Health aspects</topic><topic>Herbicides</topic><topic>Herbicides - analysis</topic><topic>Herbicides - toxicity</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Pesticide pollution</topic><topic>Pesticide Residues - analysis</topic><topic>Pesticide Residues - toxicity</topic><topic>Phytotoxicity</topic><topic>Plant growth</topic><topic>Production management</topic><topic>Regression models</topic><topic>Residues</topic><topic>Risk Assessment</topic><topic>Sand</topic><topic>Silicon Dioxide</topic><topic>Soil - chemistry</topic><topic>Soil organic matter</topic><topic>Soil Pollutants - analysis</topic><topic>Soil Pollutants - toxicity</topic><topic>Soil properties</topic><topic>Soils</topic><topic>Target detection</topic><topic>Thresholds</topic><topic>Toxicity</topic><topic>Triticum - drug effects</topic><topic>Triticum - growth & development</topic><topic>Weight reduction</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pyone, Win Win</creatorcontrib><creatorcontrib>Bell, Richard W</creatorcontrib><creatorcontrib>Rose, Michael T</creatorcontrib><creatorcontrib>McGrath, Gavan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pyone, Win Win</au><au>Bell, Richard W</au><au>Rose, Michael T</au><au>McGrath, Gavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-06</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0306865</spage><pages>e0306865-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While diuron residues are being detected more frequently in agricultural soils, there is limited information available regarding their potential phytotoxicity to non-target grain crops. This study aims to determine robust phytotoxicity thresholds for three common, but contrasting, crop species (canola, chickpea, and wheat) exposed to a range of diuron concentrations and to determine how loamy sand soil can change the toxicity thresholds relative to an inert sand. The log-logistic non-linear regression model proved most effective in determining toxicity thresholds by analysing crop responses to diuron. Canola was the most sensitive to diuron in sand followed by wheat and chickpea. Diuron exhibits higher phytotoxicity in sand compared to loamy sand, with ED50 values (which is the dose at which diuron causes a 50% decrease in plant growth) of 0.03 mg kg-1 and 0.07 mg kg-1 for canola shoot biomass inhibition and 0.01 mg kg-1 and 0.06 mg kg-1 for root dry weight reduction, respectively. The ED50 values for wheat shoot biomass (0.11 and 0.24 mg kg-1) in sand and loamy sand, respectively, and the ED50 values for root growth inhibition are 0.14 mg kg-1 in sand and 0.19 mg kg-1 in loamy sand. These values were lower than label concentrations and previously estimated average and maximum diuron residue loads (0.17 and 0.29 mg kg-1) in Western Australia paddocks. The larger ED50 values of diuron in the loamy sand can be attributed to higher soil organic matter and cation exchange capacity that decreased bio-available diuron levels. Average diuron residue loads in Western Australia crop fields exceed the ED50 value emphasizes the need for careful planning of crop rotations to avoid crop phytotoxicity from soil-borne diuron residues. Further study is needed to determine the effect of a wider range of soil properties such as pH, clay content, and soil organic matter on the phytotoxicity risk of diuron to rotational crops.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39642176</pmid><doi>10.1371/journal.pone.0306865</doi><tpages>e0306865</tpages><orcidid>https://orcid.org/0000-0001-8718-4591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0306865 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3141787503 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural land Agricultural practices Bioassays Bioavailability Biomass Brassica napus - drug effects Brassica napus - growth & development Canola Cation exchange Cation exchanging Chickpea Chickpeas Cicer - drug effects Cicer - growth & development Crop fields Crop rotation Crops Crops, Agricultural - drug effects Crops, Agricultural - growth & development Diuron Diuron - analysis Diuron - toxicity Environmental aspects Evaluation Experiments Flowers & plants Grain crops Health aspects Herbicides Herbicides - analysis Herbicides - toxicity Organic matter Organic soils Pesticide pollution Pesticide Residues - analysis Pesticide Residues - toxicity Phytotoxicity Plant growth Production management Regression models Residues Risk Assessment Sand Silicon Dioxide Soil - chemistry Soil organic matter Soil Pollutants - analysis Soil Pollutants - toxicity Soil properties Soils Target detection Thresholds Toxicity Triticum - drug effects Triticum - growth & development Weight reduction Wheat |
title | Phytotoxicity risk assessment of diuron residues in sands on wheat, chickpea, and canola |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytotoxicity%20risk%20assessment%20of%20diuron%20residues%20in%20sands%20on%20wheat,%20chickpea,%20and%20canola&rft.jtitle=PloS%20one&rft.au=Pyone,%20Win%20Win&rft.date=2024-12-06&rft.volume=19&rft.issue=12&rft.spage=e0306865&rft.pages=e0306865-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0306865&rft_dat=%3Cgale_plos_%3EA819144905%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141787503&rft_id=info:pmid/39642176&rft_galeid=A819144905&rft_doaj_id=oai_doaj_org_article_3040fee65cdb4bdeaa67f5913204e899&rfr_iscdi=true |